Collective excitations of finite fermi systems in the region of a phase transition
Teoretičeskaâ i matematičeskaâ fizika, Tome 22 (1975) no. 3, pp. 406-411
Cet article a éte moissonné depuis la source Math-Net.Ru
Analytical solution of the two-level model with pair formations in the region of phase transition, which is valid at large particle numbers, is found. Assuming the universal character of certain properties of this solution, the scheme of constructing the collective Hamiltonian in the transition region is developed for many-level system on the basis of the generalized density matrix method. As an illustration, the phase transition in a system with monopole interaction is considered.
@article{TMF_1975_22_3_a11,
author = {V. V. Mazepus},
title = {Collective excitations of finite fermi systems in the region of a~phase transition},
journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
pages = {406--411},
year = {1975},
volume = {22},
number = {3},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TMF_1975_22_3_a11/}
}
V. V. Mazepus. Collective excitations of finite fermi systems in the region of a phase transition. Teoretičeskaâ i matematičeskaâ fizika, Tome 22 (1975) no. 3, pp. 406-411. http://geodesic.mathdoc.fr/item/TMF_1975_22_3_a11/
[1] V. G. Solovev, Teoriya slozhnykh yader, «Nauka», 1971
[2] S. T. Belyaev, Selected topics in nuclear theory, Vienna, 1963, 291 | Zbl
[3] J. Feldman-Högaasen, Nucl. Phys., 28 (1961), 258 | DOI | MR
[4] R. A. Broglia, B. Sorensen, Nucl. Phys., A110 (1968), 241 | DOI
[5] H. J. Lipkin, N. Meshkov, A. J. Glick, Nucl. Phys., 62 (1965), 188 | DOI | MR
[6] G. G. Dussel, E. Maqueda, R. Perazzo, Nucl. Phys., A153 (1970), 469 | DOI
[7] D. Taules, Kvantovaya mekhanika sistem mnogikh chastits, IL, 1963 | MR
[8] R. V. Dzholos, TMF, 6 (1971), 403
[9] R. V. Dzholos, F. Denau, V. G. Kartavenko, D. Yanssen, TMF, 14 (1973), 70
[10] S. T. Belyaev, V. G. Zelevinskii, YaF, 16 (1972), 1195