Approximate solution of the equations of a model for describing highly excited states of even-even deformed nuclei
Teoretičeskaâ i matematičeskaâ fizika, Tome 22 (1975) no. 2, pp. 244-252
Cet article a éte moissonné depuis la source Math-Net.Ru
An extension of the model suggested earlier for the description of intermediate and highly excited states of odd deformed nuclei to the case of doubly even: nuclei is made. The wave function contains one-, two-, three- and four-phonon terms. The approximate solution taking into account the noncoherent pole terms is used to obtain approximate solutions of the model. The system of equations is reduced to a secular equation which: does not contain superfluous solutions. The equations obtained may serve as a basis for studying the structure of intermediate and highly excited states of doubly events deformed nuclei.
@article{TMF_1975_22_2_a9,
author = {G. Kyrchev and V. G. Solov'ev},
title = {Approximate solution of the equations of a~model for describing highly excited states of even-even deformed nuclei},
journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
pages = {244--252},
year = {1975},
volume = {22},
number = {2},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TMF_1975_22_2_a9/}
}
TY - JOUR AU - G. Kyrchev AU - V. G. Solov'ev TI - Approximate solution of the equations of a model for describing highly excited states of even-even deformed nuclei JO - Teoretičeskaâ i matematičeskaâ fizika PY - 1975 SP - 244 EP - 252 VL - 22 IS - 2 UR - http://geodesic.mathdoc.fr/item/TMF_1975_22_2_a9/ LA - ru ID - TMF_1975_22_2_a9 ER -
%0 Journal Article %A G. Kyrchev %A V. G. Solov'ev %T Approximate solution of the equations of a model for describing highly excited states of even-even deformed nuclei %J Teoretičeskaâ i matematičeskaâ fizika %D 1975 %P 244-252 %V 22 %N 2 %U http://geodesic.mathdoc.fr/item/TMF_1975_22_2_a9/ %G ru %F TMF_1975_22_2_a9
G. Kyrchev; V. G. Solov'ev. Approximate solution of the equations of a model for describing highly excited states of even-even deformed nuclei. Teoretičeskaâ i matematičeskaâ fizika, Tome 22 (1975) no. 2, pp. 244-252. http://geodesic.mathdoc.fr/item/TMF_1975_22_2_a9/
[1] V. G. Solovev, Teoriya slozhnykh yader, «Nauka», 1971
[2] V. S. Stavinskii, EChAYa, 3 (1972), 832
[3] V. G. Solovev, YaF, 13 (1971), 48
[4] V. G. Solovev, EChAYa, 3 (1972), 770
[5] V. G. Soloviev, L. A. Malov, Nucl. Phys., A196 (1972), 433 | DOI
[6] V. G. Solovev, TMF, 17 (1973), 90
[7] A. I. Vdovin, V. G. Solovev, TMF, 19 (1974), 275 ; препринт ОИЯИ Е4-7054, Дубна, 1973
[8] L. A. Malov, V. G. Soloviev, Nucl. Phys. (to appear); препринт ОИЯИ Р4-76396, Дубна, 1974
[9] A. I. Vdovin, G. Kyrchev, Ch. Stoyanov, TMF (to appear); препринт ОИЯИ Р4-7374, Дубна, 1973