Breaking of dynamical symmetries and phase shift
Teoretičeskaâ i matematičeskaâ fizika, Tome 22 (1975) no. 2, pp. 223-230
Cet article a éte moissonné depuis la source Math-Net.Ru
Notion of the broken dynamical symmetry is introduced with the aid of constructing operators which generalize the Runge–Lentz vector for the hydrogen atom. Connection between commutators of these operators with the Hamiltonian and phase shifts is established. The cases when the symmetry is defined on discrete and continuous spectrum are considered separately.
@article{TMF_1975_22_2_a6,
author = {V. A. Andreev},
title = {Breaking of dynamical symmetries and phase shift},
journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
pages = {223--230},
year = {1975},
volume = {22},
number = {2},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TMF_1975_22_2_a6/}
}
V. A. Andreev. Breaking of dynamical symmetries and phase shift. Teoretičeskaâ i matematičeskaâ fizika, Tome 22 (1975) no. 2, pp. 223-230. http://geodesic.mathdoc.fr/item/TMF_1975_22_2_a6/
[1] V. A. Fock, Phys., 98 (1935), 145 | DOI | Zbl
[2] V. Z. Bargmann, Phys., 99 (1935), 576 | DOI
[3] I. A. Malkin, V. I. Manko, YaF, 3 (1966), 372 | MR
[4] D. Zwanziger, Phys. Rev., 176 (1968), 208
[5] M. Berrondo, H. V. McIntosh, J. Math. Phys., 11 (1970), 125 | DOI
[6] V. A. Andreev, I. A. Malkin, V. I. Man'ko, Preprint PHIAN, No 1, 1971
[7] A. O. Barut, H. Kleinent, Phys. Rev., 156, 1541 ; (1967), 1546 ; 157 (1967), 1180 | DOI | MR | DOI | DOI
[8] A. M. Perelomov, V. S. Popov, ZhETF, 50 (1966), 179
[9] D. Zwanziger, J. Math. Phys., 8 (1967), 1958 | DOI
[10] V. A. Andreev, Preprint FIAN, No 99, 1970