Convergence of the perturbation series for the Yukawa interaction
Teoretičeskaâ i matematičeskaâ fizika, Tome 22 (1975) no. 2, pp. 203-212
Voir la notice de l'article provenant de la source Math-Net.Ru
It is proved that the perturbation theory series in translation-invariant case and
with the removed cut-off of boson propagator for the euclidean Green functions; converges
if $|g|^2/\bar m\lambda^2/96\bar\Delta(0)$. Here $\bar m$ is a certain quantity which remains finite when the
fermion propagator regularization is removed, $\lambda^2$ is the boson mass and $\bar\Delta(0)$ is the value of the fermion propagator at the point $x=0$ of the $x$-space. By means of other methods the same problem was considered in the work [6] for the pseudo-euclidean and
in the work [5] for the euclidean Green functions.
@article{TMF_1975_22_2_a4,
author = {A. G. Basuev},
title = {Convergence of the perturbation series for the {Yukawa} interaction},
journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
pages = {203--212},
publisher = {mathdoc},
volume = {22},
number = {2},
year = {1975},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TMF_1975_22_2_a4/}
}
A. G. Basuev. Convergence of the perturbation series for the Yukawa interaction. Teoretičeskaâ i matematičeskaâ fizika, Tome 22 (1975) no. 2, pp. 203-212. http://geodesic.mathdoc.fr/item/TMF_1975_22_2_a4/