Energy spectrum of superconductors with defects having spherical and cylindrical symmetry of their interaction potential with conduction electrons
Teoretičeskaâ i matematičeskaâ fizika, Tome 22 (1975) no. 2, pp. 269-277
Cet article a éte moissonné depuis la source Math-Net.Ru
Spatial behaviour of the ordering parameter in superconductors with defects is considered. Two cases are investigated: a) the point defect, for which the potential of interaction with conductivity electrons is rotationally invariant; b) the linear defect, for which the potential of interaction with conductivity electrons is invariant under the rotations with respect to the defect axis.
@article{TMF_1975_22_2_a12,
author = {M. M. Gvozdikov and I. I. Fal'ko},
title = {Energy spectrum of superconductors with defects having spherical and cylindrical symmetry of their interaction potential with conduction electrons},
journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
pages = {269--277},
year = {1975},
volume = {22},
number = {2},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TMF_1975_22_2_a12/}
}
TY - JOUR AU - M. M. Gvozdikov AU - I. I. Fal'ko TI - Energy spectrum of superconductors with defects having spherical and cylindrical symmetry of their interaction potential with conduction electrons JO - Teoretičeskaâ i matematičeskaâ fizika PY - 1975 SP - 269 EP - 277 VL - 22 IS - 2 UR - http://geodesic.mathdoc.fr/item/TMF_1975_22_2_a12/ LA - ru ID - TMF_1975_22_2_a12 ER -
%0 Journal Article %A M. M. Gvozdikov %A I. I. Fal'ko %T Energy spectrum of superconductors with defects having spherical and cylindrical symmetry of their interaction potential with conduction electrons %J Teoretičeskaâ i matematičeskaâ fizika %D 1975 %P 269-277 %V 22 %N 2 %U http://geodesic.mathdoc.fr/item/TMF_1975_22_2_a12/ %G ru %F TMF_1975_22_2_a12
M. M. Gvozdikov; I. I. Fal'ko. Energy spectrum of superconductors with defects having spherical and cylindrical symmetry of their interaction potential with conduction electrons. Teoretičeskaâ i matematičeskaâ fizika, Tome 22 (1975) no. 2, pp. 269-277. http://geodesic.mathdoc.fr/item/TMF_1975_22_2_a12/
[1] A. Fetter, Phys. Rev., 140 A (1965), 1921 | DOI | MR
[2] T. Tsuneto, Progr. Theor. Phys., 37 (1967), 1 | DOI
[3] J. Heinrichs, Phys. Rev., 168 (1968), 451 | DOI
[4] A. A. Abrikosov, L. P. Gorkov, I. E. Dzyaloshinskii, Metody kvantovoi teorii polya v statisticheskoi fizike, Fizmatgiz, 1962 | MR | Zbl
[5] A. G. Sitenko, Lektsii po teorii rasseyaniya, «Vyscha shkola», 1971