Phase-shift method for scattering on potentials that allow separation of variables in spheroidal coordinates
Teoretičeskaâ i matematičeskaâ fizika, Tome 22 (1975) no. 2, pp. 253-259

Voir la notice de l'article provenant de la source Math-Net.Ru

It is shown that angular functions arising in the separation of variables as well as the phases of corresponding radial functions represent the eigen-functions and phases of the unitary operator $SI$. The scattering amplitude and cross-sections are directly expressed in terms of these functions and phase shifts. Modified expansion for the amplitude is suggested for long-range potentials with the Coulomb behaviour at large distances.
@article{TMF_1975_22_2_a10,
     author = {D. I. Abramov and I. V. Komarov},
     title = {Phase-shift method for scattering on potentials that allow separation of variables in spheroidal coordinates},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {253--259},
     publisher = {mathdoc},
     volume = {22},
     number = {2},
     year = {1975},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_1975_22_2_a10/}
}
TY  - JOUR
AU  - D. I. Abramov
AU  - I. V. Komarov
TI  - Phase-shift method for scattering on potentials that allow separation of variables in spheroidal coordinates
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 1975
SP  - 253
EP  - 259
VL  - 22
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TMF_1975_22_2_a10/
LA  - ru
ID  - TMF_1975_22_2_a10
ER  - 
%0 Journal Article
%A D. I. Abramov
%A I. V. Komarov
%T Phase-shift method for scattering on potentials that allow separation of variables in spheroidal coordinates
%J Teoretičeskaâ i matematičeskaâ fizika
%D 1975
%P 253-259
%V 22
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TMF_1975_22_2_a10/
%G ru
%F TMF_1975_22_2_a10
D. I. Abramov; I. V. Komarov. Phase-shift method for scattering on potentials that allow separation of variables in spheroidal coordinates. Teoretičeskaâ i matematičeskaâ fizika, Tome 22 (1975) no. 2, pp. 253-259. http://geodesic.mathdoc.fr/item/TMF_1975_22_2_a10/