Selection rules for dual resonance states
Teoretičeskaâ i matematičeskaâ fizika, Tome 22 (1975) no. 2, pp. 147-158
Cet article a éte moissonné depuis la source Math-Net.Ru
Additional conditions for the selection of dual states arising in the process of the factorization of dual amplitudes by means of the finite set of five-dimensional oscillators. One of these conditions represents linear relativistically invariant equation, which possesses in addition the $SE(2,R)$ invariance. General solution of this equation and some related mathematical problems are considered.
@article{TMF_1975_22_2_a0,
author = {Kh. D. Popov and D. Ts. Stoyanov and A. N. Tavkhelidze},
title = {Selection rules for dual resonance states},
journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
pages = {147--158},
year = {1975},
volume = {22},
number = {2},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TMF_1975_22_2_a0/}
}
Kh. D. Popov; D. Ts. Stoyanov; A. N. Tavkhelidze. Selection rules for dual resonance states. Teoretičeskaâ i matematičeskaâ fizika, Tome 22 (1975) no. 2, pp. 147-158. http://geodesic.mathdoc.fr/item/TMF_1975_22_2_a0/
[1] A. N. Kvinikhidze, B. L. Markovski, D. Ts. Stoyanov, A. N. Tavkhelidze, TMF, 6 (1970), 166
[2] A. N. Kvinikhidze, Kh. D. Popov, D. Ts. Stoyanov, A. N. Tavkhelidze, TMF, 9 (1971), 190
[3] A. N. Kvinikhidze, B. L. Markovski, Kh. D. Popov, D. Ts. Stoyanov, A. N. Tavkhelidze, “Binarnye reaktsii”, Trudy mezhd. seminara, D-6004, Dubna, 1971
[4] A. Rabl, Nucl. Phys., B27 (1971), 409
[5] G. Veneziano, Nuovo Gim., 57A (1968), 190 | DOI
[6] K. Bardakci, H. Ruegg, Phys. Rev., 183 (1969), 1884 | DOI
[7] G. P. Demchenko, V. V. Kukhtin, B. V. Struminskii, Preprint ITF, 72-49R, Kiev, 1972
[8] Kh. D. Popov, D. Ts. Stoyanov, A. N. Tavkhelidze, TMF, 12 (1972), 370