Statistical derivation of equations of multifluid hydrodynamics
Teoretičeskaâ i matematičeskaâ fizika, Tome 22 (1975) no. 1, pp. 124-134
Voir la notice de l'article provenant de la source Math-Net.Ru
Hydrodynamic equations for a mixture of $n$ fluids differing from each other by their
molecular masses, temperatures and flow velocities are derived by means of Zubarev's
nonequilibrium distribution function method, in the linear approximation with respect
to intercomponent interaction and macroscopic spatial inhomogeneity of the system. Intermolecular
forces are supposed to be central and short-ranged. The special case of
slight deviation from equilibrium, when $n=2$, is considered, the formulas of two types
corresponding to the fluctuation-dissipation theorems, being obtained.
@article{TMF_1975_22_1_a9,
author = {V. A. Savchenko},
title = {Statistical derivation of equations of multifluid hydrodynamics},
journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
pages = {124--134},
publisher = {mathdoc},
volume = {22},
number = {1},
year = {1975},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TMF_1975_22_1_a9/}
}
V. A. Savchenko. Statistical derivation of equations of multifluid hydrodynamics. Teoretičeskaâ i matematičeskaâ fizika, Tome 22 (1975) no. 1, pp. 124-134. http://geodesic.mathdoc.fr/item/TMF_1975_22_1_a9/