Limit distribution functions in classical statistical physics
    
    
  
  
  
      
      
      
        
Teoretičeskaâ i matematičeskaâ fizika, Tome 21 (1974) no. 3, pp. 388-401
    
  
  
  
  
  
    
      
      
        
      
      
      
    Voir la notice de l'article provenant de la source Math-Net.Ru
            
              			The thermodynamic limit for the partial distribution functions is considered on the basis of
Bogolyubov's generating functional method. For one-component systems of hard spheres
with binary interaction whose potential at large distances decreases faster than $r_{12}^{-3}$, it is shown that the limit generating functional of the grand canonical ensemble, and when certain
“stability conditions” are satisfied, of the canonical ensemble as well: 1) exists in the
whole interval of states of the thermodynamic system; 2) defines limit distribution functions;
3) satisfies Bogolyubov's functional equation; 4) can be expanded in a convergent functional
Taylor series.
			
            
            
            
          
        
      @article{TMF_1974_21_3_a9,
     author = {G. I. Nazin},
     title = {Limit distribution functions in classical statistical physics},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {388--401},
     publisher = {mathdoc},
     volume = {21},
     number = {3},
     year = {1974},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_1974_21_3_a9/}
}
                      
                      
                    G. I. Nazin. Limit distribution functions in classical statistical physics. Teoretičeskaâ i matematičeskaâ fizika, Tome 21 (1974) no. 3, pp. 388-401. http://geodesic.mathdoc.fr/item/TMF_1974_21_3_a9/
