Quasiinvariants of the motion and existence of the $\varepsilon$-limit in the nonequilibrium statistical operator method
    
    
  
  
  
      
      
      
        
Teoretičeskaâ i matematičeskaâ fizika, Tome 21 (1974) no. 3, pp. 354-366
    
  
  
  
  
  
    
      
      
        
      
      
      
    Voir la notice de l'article provenant de la source Math-Net.Ru
            
              			In the framework of the axiomatic approach to the thermodynamic limit developed by 
Ruelle [6] and Haag et al. [7], an investigation is made of the existence of a nonequilibrium stationary state generated by a retarded solution of the Liouville equation, i.e., of the limit as
$\varepsilon\to+0$ of states generated by quasiinvariants of the motion obtained by causal smoothing of the coarse-grained statistical operator [2, 3]. It is shown that the $\varepsilon$-limit exists if the coarse-grained state and the operators of time evolution of the variables at positive times in the thermodynamic limit satisfy a definite condition, which is intimately related to the condition of correlation weakening. The proof is based on the use of the 
$n$-quasiinvariants of the motion [3] and the Yosida–Kakutani ergodic theorem.
			
            
            
            
          
        
      @article{TMF_1974_21_3_a6,
     author = {M. I. Auslender},
     title = {Quasiinvariants of the motion and existence of the $\varepsilon$-limit in the nonequilibrium statistical operator method},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {354--366},
     publisher = {mathdoc},
     volume = {21},
     number = {3},
     year = {1974},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_1974_21_3_a6/}
}
                      
                      
                    TY - JOUR AU - M. I. Auslender TI - Quasiinvariants of the motion and existence of the $\varepsilon$-limit in the nonequilibrium statistical operator method JO - Teoretičeskaâ i matematičeskaâ fizika PY - 1974 SP - 354 EP - 366 VL - 21 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/TMF_1974_21_3_a6/ LA - ru ID - TMF_1974_21_3_a6 ER -
%0 Journal Article %A M. I. Auslender %T Quasiinvariants of the motion and existence of the $\varepsilon$-limit in the nonequilibrium statistical operator method %J Teoretičeskaâ i matematičeskaâ fizika %D 1974 %P 354-366 %V 21 %N 3 %I mathdoc %U http://geodesic.mathdoc.fr/item/TMF_1974_21_3_a6/ %G ru %F TMF_1974_21_3_a6
M. I. Auslender. Quasiinvariants of the motion and existence of the $\varepsilon$-limit in the nonequilibrium statistical operator method. Teoretičeskaâ i matematičeskaâ fizika, Tome 21 (1974) no. 3, pp. 354-366. http://geodesic.mathdoc.fr/item/TMF_1974_21_3_a6/
