Phase transition with change of symmetry as bifurcation of the solution of a nonlinear integral equation
Teoretičeskaâ i matematičeskaâ fizika, Tome 21 (1974) no. 3, pp. 343-353 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

A phase transition with change of space symmetry is described in terms of bifurcation of the solution of a nonlinear integral equation of Hammerstein type. The change in the symmetry on the transition and the dependence of the order parameter on the temperature are considered. The results of Landau's phenomenological theory are obtained as one of the special cases.
@article{TMF_1974_21_3_a5,
     author = {E. E. Tareeva},
     title = {Phase transition with change of symmetry as bifurcation of the solution of a~nonlinear integral equation},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {343--353},
     year = {1974},
     volume = {21},
     number = {3},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_1974_21_3_a5/}
}
TY  - JOUR
AU  - E. E. Tareeva
TI  - Phase transition with change of symmetry as bifurcation of the solution of a nonlinear integral equation
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 1974
SP  - 343
EP  - 353
VL  - 21
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/TMF_1974_21_3_a5/
LA  - ru
ID  - TMF_1974_21_3_a5
ER  - 
%0 Journal Article
%A E. E. Tareeva
%T Phase transition with change of symmetry as bifurcation of the solution of a nonlinear integral equation
%J Teoretičeskaâ i matematičeskaâ fizika
%D 1974
%P 343-353
%V 21
%N 3
%U http://geodesic.mathdoc.fr/item/TMF_1974_21_3_a5/
%G ru
%F TMF_1974_21_3_a5
E. E. Tareeva. Phase transition with change of symmetry as bifurcation of the solution of a nonlinear integral equation. Teoretičeskaâ i matematičeskaâ fizika, Tome 21 (1974) no. 3, pp. 343-353. http://geodesic.mathdoc.fr/item/TMF_1974_21_3_a5/

[1] N. N. Bogolyubov, Problemy dinamicheskoi teorii v statisticheskoi fizike, Gostekhizdat, 1946 | MR

[2] S. V. Tyablikov, ZhETF, 17 (1947), 386

[3] J. G. Kirkwood, E. Monroe, J. Chem. Phys., 9 (1941), 514 ; D. J. Gates, Ann. Phys., 71 (1971), 395 | DOI | DOI

[4] A. A. Vlasov, Teoriya mnogikh chastits, Gostekhizdat, 1950

[5] J. D. Weeks, S. A. Rice, J. J. Kozak, J. Chem. Phys., 52 (1970), 2416 | DOI | MR

[6] R. Brout, Physica, 29 (1963), 1041 | DOI

[7] M. Girardeau, J. Math Phys., 3 (1962), 131 | DOI | MR

[8] S. Gartenhaus, G. Stranahan, Phys. Rev., 138A (1965), 1346 ; 173 (1968), 260 | DOI | MR | DOI

[9] A. Hammerstein, Acta Math., 54 (1930), 117 | DOI | MR | Zbl

[10] N. N. Bogolyubov, Preprint R-1451, OIYaI, 1963 | MR

[11] L. P. Kadanoff et al., Rev. Mod. Phys., 39 (1967), 395 | DOI

[12] H. L. Scott, J. Math Phys., 11 (1970), 214 | DOI

[13] L. D. Landau, ZhETF, 7 (1937), 19

[14] E. M. Lifshits, ZhETF, 11 (1941), 2155

[15] V. L. Indenbom, Kristallografiya, 5 (1960), 115 | MR

[16] E. E. Tareeva, DAN SSSR, 189 (1969), 299

[17] Cheng Ing-Yih, J. J. Kozak, J. Math Phys., 13 (1972), 51 | DOI | MR

[18] M. A. Krasnoselskii, Topologicheskie metody v teorii nelineinykh integralnykh uravnenii, Gostekhizdat, 1956 | MR

[19] C. L. Dolph, Trans. Amer. Math. Soc., 66 (1949), 289 ; C. L. Dolph, G. J. Minthy, Nonlinear Integral Equations, ed. P. M. Anselone, The University of Wisconsin Press, Madison, 1964 | DOI | MR | Zbl | MR

[20] M. M. Vainberg, V. A. Trenogin, Teoriya vetvleniya reshenii nelineinykh integralnykh uravnenii, «Nauka», 1969 | MR

[21] N. G. Chebotarev, Teoriya algebraicheskikh funktsii, Gostekhizdat, 1948