Generalized transport equations in the theory of irreversible processes
Teoretičeskaâ i matematičeskaâ fizika, Tome 21 (1974) no. 3, pp. 402-414
Voir la notice de l'article provenant de la source Math-Net.Ru
Zubarev's nonequilibrium statistical operator method [1, 2] is used to study transport
phenomena in a nonequilibrtum system. For the transport coefficients that depend on the
frequency and wave vector, exact expressions of two types are obtained, these generalizing
the Kubo formulas: in terms of a combination of time correlation functions and in terms of
functions in which the evolution in time includes a certain projection operation. As an example, the hydrodynamics of a simple liquid is considered and the structure of density–density correlation functions is discussed.
@article{TMF_1974_21_3_a10,
author = {M. V. Sergeev},
title = {Generalized transport equations in the theory of irreversible processes},
journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
pages = {402--414},
publisher = {mathdoc},
volume = {21},
number = {3},
year = {1974},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TMF_1974_21_3_a10/}
}
M. V. Sergeev. Generalized transport equations in the theory of irreversible processes. Teoretičeskaâ i matematičeskaâ fizika, Tome 21 (1974) no. 3, pp. 402-414. http://geodesic.mathdoc.fr/item/TMF_1974_21_3_a10/