Essentially nonlinear one-dimensional model of classical field theory
Teoretičeskaâ i matematičeskaâ fizika, Tome 21 (1974) no. 2, pp. 160-174
Voir la notice de l'article provenant de la source Math-Net.Ru
It is shown that the equation $u_{tt}-u_{xx}+\sin u=0$ with boundary condition $u(x,t)\to 0$ $(\operatorname{mod}2\pi)$ as $|x|\to\infty$, which describes a classical field with essentially nonlinear interaction, is a completely integrable Hamiltonian system. The results are interpreted in terms of particles corresponding to the field $u(x,t)$.
@article{TMF_1974_21_2_a1,
author = {L. A. Takhtadzhyan and L. D. Faddeev},
title = {Essentially nonlinear one-dimensional model of classical field theory},
journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
pages = {160--174},
publisher = {mathdoc},
volume = {21},
number = {2},
year = {1974},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TMF_1974_21_2_a1/}
}
TY - JOUR AU - L. A. Takhtadzhyan AU - L. D. Faddeev TI - Essentially nonlinear one-dimensional model of classical field theory JO - Teoretičeskaâ i matematičeskaâ fizika PY - 1974 SP - 160 EP - 174 VL - 21 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/TMF_1974_21_2_a1/ LA - ru ID - TMF_1974_21_2_a1 ER -
L. A. Takhtadzhyan; L. D. Faddeev. Essentially nonlinear one-dimensional model of classical field theory. Teoretičeskaâ i matematičeskaâ fizika, Tome 21 (1974) no. 2, pp. 160-174. http://geodesic.mathdoc.fr/item/TMF_1974_21_2_a1/