Essentially nonlinear one-dimensional model of classical field theory
Teoretičeskaâ i matematičeskaâ fizika, Tome 21 (1974) no. 2, pp. 160-174 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

It is shown that the equation $u_{tt}-u_{xx}+\sin u=0$ with boundary condition $u(x,t)\to 0$ $(\operatorname{mod}2\pi)$ as $|x|\to\infty$, which describes a classical field with essentially nonlinear interaction, is a completely integrable Hamiltonian system. The results are interpreted in terms of particles corresponding to the field $u(x,t)$.
@article{TMF_1974_21_2_a1,
     author = {L. A. Takhtadzhyan and L. D. Faddeev},
     title = {Essentially nonlinear one-dimensional model of classical field theory},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {160--174},
     year = {1974},
     volume = {21},
     number = {2},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_1974_21_2_a1/}
}
TY  - JOUR
AU  - L. A. Takhtadzhyan
AU  - L. D. Faddeev
TI  - Essentially nonlinear one-dimensional model of classical field theory
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 1974
SP  - 160
EP  - 174
VL  - 21
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/TMF_1974_21_2_a1/
LA  - ru
ID  - TMF_1974_21_2_a1
ER  - 
%0 Journal Article
%A L. A. Takhtadzhyan
%A L. D. Faddeev
%T Essentially nonlinear one-dimensional model of classical field theory
%J Teoretičeskaâ i matematičeskaâ fizika
%D 1974
%P 160-174
%V 21
%N 2
%U http://geodesic.mathdoc.fr/item/TMF_1974_21_2_a1/
%G ru
%F TMF_1974_21_2_a1
L. A. Takhtadzhyan; L. D. Faddeev. Essentially nonlinear one-dimensional model of classical field theory. Teoretičeskaâ i matematičeskaâ fizika, Tome 21 (1974) no. 2, pp. 160-174. http://geodesic.mathdoc.fr/item/TMF_1974_21_2_a1/

[1] C. S. Gardner, T. M. Greene, M. D. Kruskal, R. M. Miura, Phys. Rev. Lett., 19 (1967), 1095 | DOI

[2] P. D. Laks, Matematika, 13:5 (1969), 128

[3] V. E. Zakharov, ZhETF, 60 (1970), 993

[4] V. E. Zakharov, A. B. Shabat, ZhETF, 61 (1971), 118

[5] M. J. Ablowitz, D. J. Kaup, A. C. Newell, H. Segur, Phys. Rev. Lett., 30 (1973), 1262 | DOI | MR

[6] V. E. Zakharov, L. A. Takhtadzhyan, L. D. Faddeev, DAN SSSR (to appear) | Zbl

[7] L. D. Faddeev, L. A. Takhtadjan, Phys. Lett. (to appear) | MR | Zbl

[8] V. E. Zakharov, L. D. Faddeev, Funkts. analiz i ego pril., 5:4 (1971), 18 | MR | Zbl

[9] L. A. Takhtadzhyan, Zapiski nauchnykh seminarov LOMI, 37 (1973), 66 | Zbl

[10] L. A. Takhtadzhyan, ZhETF, 66 (1974), 476

[11] L. D. Faddeev, Tr. Matem. in-ta im. V. A. Steklova, 73 (1964), 314 | MR | Zbl

[12] D. Finkelstein, C. W. Misner, Ann. Phys., 6 (1959), 230 | DOI | MR | Zbl

[13] T. H. R. Skyrme, Proc. Roy. Soc. (London), A262 (1961), 237 | DOI | MR | Zbl