Essentially nonlinear one-dimensional model of classical field theory
Teoretičeskaâ i matematičeskaâ fizika, Tome 21 (1974) no. 2, pp. 160-174

Voir la notice de l'article provenant de la source Math-Net.Ru

It is shown that the equation $u_{tt}-u_{xx}+\sin u=0$ with boundary condition $u(x,t)\to 0$ $(\operatorname{mod}2\pi)$ as $|x|\to\infty$, which describes a classical field with essentially nonlinear interaction, is a completely integrable Hamiltonian system. The results are interpreted in terms of particles corresponding to the field $u(x,t)$.
@article{TMF_1974_21_2_a1,
     author = {L. A. Takhtadzhyan and L. D. Faddeev},
     title = {Essentially nonlinear one-dimensional model of classical field theory},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {160--174},
     publisher = {mathdoc},
     volume = {21},
     number = {2},
     year = {1974},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_1974_21_2_a1/}
}
TY  - JOUR
AU  - L. A. Takhtadzhyan
AU  - L. D. Faddeev
TI  - Essentially nonlinear one-dimensional model of classical field theory
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 1974
SP  - 160
EP  - 174
VL  - 21
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TMF_1974_21_2_a1/
LA  - ru
ID  - TMF_1974_21_2_a1
ER  - 
%0 Journal Article
%A L. A. Takhtadzhyan
%A L. D. Faddeev
%T Essentially nonlinear one-dimensional model of classical field theory
%J Teoretičeskaâ i matematičeskaâ fizika
%D 1974
%P 160-174
%V 21
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TMF_1974_21_2_a1/
%G ru
%F TMF_1974_21_2_a1
L. A. Takhtadzhyan; L. D. Faddeev. Essentially nonlinear one-dimensional model of classical field theory. Teoretičeskaâ i matematičeskaâ fizika, Tome 21 (1974) no. 2, pp. 160-174. http://geodesic.mathdoc.fr/item/TMF_1974_21_2_a1/