Essentially nonlinear fields and vacuum polarization
Teoretičeskaâ i matematičeskaâ fizika, Tome 21 (1974) no. 2, pp. 155-159
Cet article a éte moissonné depuis la source Math-Net.Ru
It is shown that the behavior of the energy density of interacting fields with large gradients accords with their classification in accordance with renormalizability. Vacuum polarization, which leads to fields with bounded derivatives, is also considered.
@article{TMF_1974_21_2_a0,
author = {D. I. Blokhintsev},
title = {Essentially nonlinear fields and vacuum polarization},
journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
pages = {155--159},
year = {1974},
volume = {21},
number = {2},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TMF_1974_21_2_a0/}
}
D. I. Blokhintsev. Essentially nonlinear fields and vacuum polarization. Teoretičeskaâ i matematičeskaâ fizika, Tome 21 (1974) no. 2, pp. 155-159. http://geodesic.mathdoc.fr/item/TMF_1974_21_2_a0/
[1] D. I. Blokhintsev, UFN, 62 (1957), 381 ; УФН, 110 (1973), 482 | DOI
[2] M. K. Volkov, V. N. Pervushin, Preprint E2-7661; Препринт E2-7283, ОИЯИ, 1973
[3] M. K. Volkov, Ann. Phys., 49 (1968), 202 | DOI | MR
[4] D. I. Blokhintsev, DAN SSSR, 82 (1952), 553
[5] D. I. Blokhintsev, Prostranstvo i vremya v mikromire, «Nauka», 1970 | Zbl
[6] B. M. Barbashov, N. A. Chernikov, ZhETF, 50 (1966), 1296
[7] P. Cadard, L. Goldstone, C. Rebbi, C. Thorn, Nucl. Phys., B56 (1973), 109
[8] B. M. Barbashov, N. A. Chernikov, Preprint P-2151, OIYaI, 1965
[9] A. I. Akhiezer, V. B. Berestetskii, Kvantovaya elektrodinamika, «Nauka», 1969 | MR