Spectrum and correlation functions of an anisotropic Heisenberg antiferromagnet
    
    
  
  
  
      
      
      
        
Teoretičeskaâ i matematičeskaâ fizika, Tome 21 (1974) no. 1, pp. 86-102
    
  
  
  
  
  
    
      
      
        
      
      
      
    Voir la notice de l'article provenant de la source Math-Net.Ru
            
              			A study is made of a matrix Green's function constructed with Pauli operators and describing
the transverse components of the dynamic susceptibility tensor Of a two-sublattice anisotropic
Heisenberg antiferromagnet with spin 1/2 in a longitudinal magnetic field. In the
generalized Hartree–Fook approximation (without allowance for damping) the renormalized
magnon spectrum and the one-particle (normal and anomalous) correlation functions in the
antiferromagnetic phase are found. The cases of easy-plane and easy-axis anisotropy are
studied in detail; in the second case the phase boundary at low temperatures and near the
N6el point is calculated.
			
            
            
            
          
        
      @article{TMF_1974_21_1_a7,
     author = {V. I. Lymar' and Yu. G. Rudoi},
     title = {Spectrum and correlation functions of an anisotropic {Heisenberg} antiferromagnet},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {86--102},
     publisher = {mathdoc},
     volume = {21},
     number = {1},
     year = {1974},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_1974_21_1_a7/}
}
                      
                      
                    TY - JOUR AU - V. I. Lymar' AU - Yu. G. Rudoi TI - Spectrum and correlation functions of an anisotropic Heisenberg antiferromagnet JO - Teoretičeskaâ i matematičeskaâ fizika PY - 1974 SP - 86 EP - 102 VL - 21 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/TMF_1974_21_1_a7/ LA - ru ID - TMF_1974_21_1_a7 ER -
V. I. Lymar'; Yu. G. Rudoi. Spectrum and correlation functions of an anisotropic Heisenberg antiferromagnet. Teoretičeskaâ i matematičeskaâ fizika, Tome 21 (1974) no. 1, pp. 86-102. http://geodesic.mathdoc.fr/item/TMF_1974_21_1_a7/
