Spectrum and correlation functions of an anisotropic Heisenberg antiferromagnet
Teoretičeskaâ i matematičeskaâ fizika, Tome 21 (1974) no. 1, pp. 86-102 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

A study is made of a matrix Green's function constructed with Pauli operators and describing the transverse components of the dynamic susceptibility tensor Of a two-sublattice anisotropic Heisenberg antiferromagnet with spin 1/2 in a longitudinal magnetic field. In the generalized Hartree–Fook approximation (without allowance for damping) the renormalized magnon spectrum and the one-particle (normal and anomalous) correlation functions in the antiferromagnetic phase are found. The cases of easy-plane and easy-axis anisotropy are studied in detail; in the second case the phase boundary at low temperatures and near the N6el point is calculated.
@article{TMF_1974_21_1_a7,
     author = {V. I. Lymar' and Yu. G. Rudoi},
     title = {Spectrum and correlation functions of an anisotropic {Heisenberg} antiferromagnet},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {86--102},
     year = {1974},
     volume = {21},
     number = {1},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_1974_21_1_a7/}
}
TY  - JOUR
AU  - V. I. Lymar'
AU  - Yu. G. Rudoi
TI  - Spectrum and correlation functions of an anisotropic Heisenberg antiferromagnet
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 1974
SP  - 86
EP  - 102
VL  - 21
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/TMF_1974_21_1_a7/
LA  - ru
ID  - TMF_1974_21_1_a7
ER  - 
%0 Journal Article
%A V. I. Lymar'
%A Yu. G. Rudoi
%T Spectrum and correlation functions of an anisotropic Heisenberg antiferromagnet
%J Teoretičeskaâ i matematičeskaâ fizika
%D 1974
%P 86-102
%V 21
%N 1
%U http://geodesic.mathdoc.fr/item/TMF_1974_21_1_a7/
%G ru
%F TMF_1974_21_1_a7
V. I. Lymar'; Yu. G. Rudoi. Spectrum and correlation functions of an anisotropic Heisenberg antiferromagnet. Teoretičeskaâ i matematičeskaâ fizika, Tome 21 (1974) no. 1, pp. 86-102. http://geodesic.mathdoc.fr/item/TMF_1974_21_1_a7/

[1] Yu. A. Tserkovnikov, TMF, 7 (1971), 250

[2] Yu. G. Rudoi, Yu. A. Tserkovnikov, TMF, 14 (1973), 102

[3] Yu. G. Rudoi, Yu. A. Tserkovnikov, TMF, 19 (1974), 252

[4] S. V. Tyablikov, Metody kvantovoi teorii magnetizma, «Nauka», 1965 | MR

[5] J. Goldstone, Nuovo Cim., 19 (1961), 154 | DOI | MR | Zbl

[6] N. N. Bogolyubov, Preprint R-1451, OIYaI, 1963; Собр. соч., т. 3, «Наукова думка», 1971

[7] V. G. Baryakhtar, A. G. Kvirikadze, D. A. Yablonskii, FTT, 13 (1971), 3225

[8] A. Pekalsky, W. J. Zietek, Acta Phys. Polon., A39 (1971), 327

[9] F. Bloch, Z. Phys., 61 (1930), 206 | DOI | Zbl

[10] C. Kittel, Phys. Rev., 82 (1951), 565 | DOI

[11] T. Nagamiya, Progr. Theor. Phys., 6, 342 ; (1951), 350 | DOI | Zbl | DOI

[12] E. A. Turov, Fizicheskie svoistva magnitouporyadochennykh kristallov, Izd-vo AN SSSR, 1963

[13] A. S. Borovik-Romanov, “Antiferromagnetizm”, Itogi nauki, VINITI, 1962

[14] T. Nakamura, M. Bloch, Phys. Rev., 132 (1963), 2528 | DOI

[15] S. H. Liu, Phys. Rev., 142 (1966), 267 ; C. C. Sung, Phys. Rev., 168 (1968), 640 | DOI | MR | DOI

[16] J. Feder, E. Pytte, Phys. Rev., 168 (1968), 640 | DOI

[17] O. Nagai, Phys. Rev., 180 (1969), 557 | DOI

[18] H. B. Callen, Phys. Rev., 130 (1963), 890 | DOI | Zbl

[19] K. Tani, Progr. Theor. Phys., 31 (1964), 335 | DOI

[20] T. Oguchi, Phys. Rev., 117 (1960), 117 | DOI | Zbl

[21] F. B. Anderson, H. B. Callen, Phys. Rev., 136 (1964), A1069 | MR

[22] V. G. Baryakhtar, E. V. Zarochintsev, V. A. Popov, FTT, 11 (1969), 2344

[23] Pu Fu-cho, FTT, 3 (1961), 476

[24] V. A. Schmidt, S. A. Friedberg, J. Appl. Phys., 38 (1967), 5319 ; J. H. Schelleng, S. A. Friedberg, Phys. Rev., 185 (1969), 728 ; Y. Shapira, Phys. Rev., 187 (1969), 734 | DOI | DOI | DOI

[25] A. Oguchi, Progr. Theor. Phys., 44 (1970), 1548 | DOI

[26] K. Sawada, Progr. Theor. Phys., 43 (1970), 1199 | DOI

[27] T. Oguchi, J. Phys. Soc. Jap., 30 (1971), 988 | DOI | MR