Finiteness of the discrete spectrum in the quantum $n$-particle problem
Teoretičeskaâ i matematičeskaâ fizika, Tome 21 (1974) no. 1, pp. 60-73 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

Sufficient conditions are found for the finiteness of the discrete spectrum of the energy operators of quantum many-particle systems in spaces of functions of given symmetry. These conditions enable one in many cases to reduce the problem of the finiteness of the discrete spectrum of the energy operator of a many-particle system to the analogous problem for a two-particle system.
@article{TMF_1974_21_1_a5,
     author = {G. M. Zhislin},
     title = {Finiteness of the discrete spectrum in the quantum $n$-particle problem},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {60--73},
     year = {1974},
     volume = {21},
     number = {1},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_1974_21_1_a5/}
}
TY  - JOUR
AU  - G. M. Zhislin
TI  - Finiteness of the discrete spectrum in the quantum $n$-particle problem
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 1974
SP  - 60
EP  - 73
VL  - 21
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/TMF_1974_21_1_a5/
LA  - ru
ID  - TMF_1974_21_1_a5
ER  - 
%0 Journal Article
%A G. M. Zhislin
%T Finiteness of the discrete spectrum in the quantum $n$-particle problem
%J Teoretičeskaâ i matematičeskaâ fizika
%D 1974
%P 60-73
%V 21
%N 1
%U http://geodesic.mathdoc.fr/item/TMF_1974_21_1_a5/
%G ru
%F TMF_1974_21_1_a5
G. M. Zhislin. Finiteness of the discrete spectrum in the quantum $n$-particle problem. Teoretičeskaâ i matematičeskaâ fizika, Tome 21 (1974) no. 1, pp. 60-73. http://geodesic.mathdoc.fr/item/TMF_1974_21_1_a5/

[1] M. Sh. Birman, “O spektre singulyarnykh granichnykh zadach”, Matem. sb., 55 (97):2 (1961), 125 | MR | Zbl

[2] J. Schwinger, Proc. Nat. Acad. Sci., USA, 47 (1961), 122 | DOI | MR

[3] J. Uchiyama, “On the spectra of integral operators connected with Boltzmann and Schr̈odinger operators”, Publ. RIMS, Kyoto University, ser. A, 3 (1976), 101 | DOI | MR

[4] B. Simon, Helv. Phys. Acta, 43 (1970), 607 | MR

[5] J. Uchiyama, “Finiteness of the number of discrete eigenvalue of the Schr̈odinger operator for a three particle system”, Publ. RIMS, Kyoto University, ser. A, 5 (1969), 51 | DOI | MR | Zbl

[6] J. Uchiyama, “Finiteness of the number of discrete eigenvalue of the Schr̈odinger operator for a three particle system, II”, Publ. RIMS, Kyoto University, ser. A, 6 (1970), 193 | DOI | MR | Zbl

[7] D. R. Yafaev, DAN SSSR, 206 (1972), 68

[8] G. M. Zhislin, TMF, 7 (1971), 332 | Zbl

[9] M. A. Antonets, G. M. Zhislin, I. A. Shereshevskii, TMF, 14 (1973), 235 | MR

[10] G. M. Zhislin, DAN SSSR, 207 (1972), 25 | Zbl

[11] D. R. Yafaev, Funktsionalnyi analiz i ego prilozheniya, 6 (1972), 103

[12] K. Jörgens, Über das wesentliche Spectrum elliptischer differential Operatoren von Scrödinger-Typ, Universität Heidelberg, Institut für Angew. Math., 1965

[13] G. M. Zhislin, Izv. AN SSSR, ser. matem., 33 (1969), 590 | Zbl

[14] A. G. Sigalov, I. M. Sigal, TMF, 5 (1970), 73 | MR

[15] R. Kurant, D. Gilbert, Metody matematicheskoi fiziki, t. 1, Gostekhizdat, 1951