Singular quasipotential equation
Teoretičeskaâ i matematičeskaâ fizika, Tome 21 (1974) no. 1, pp. 37-48 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

A study is made of the quasipotential equation for the partial-wave scattering amplitude in momentum space. For singular quasipotentials $V(r)=gr^{-2n+1}$ ($n$ integral, greater than or equal to 1) the integral equation reduces to an inhomogeneous differential equation of order $2n$ with definite boundary conditions. For $n=2$, $l>0$, the existence and uniqueness of the solution of the corresponding boundary-value problem is proved. It is proposed to construct the solution in the $S$-wave case ($l=0$) by analytic continuation in $l$. It is shown that the solution obtained in this manner satisfies an integral equation with a potential that differs from the analytic continuation in $l$ of the original polynomial by a definite polynomial. The solutions that are found can be represented as series in powers of $g^\nu(\ln g)^{n_\nu}$ (modified perturbation theory). An approximate method of investigating quasipotentials with arbitrary (nonintegral) $n$ is proposed.
@article{TMF_1974_21_1_a3,
     author = {V. Sh. Gogokhiya and A. T. Filippov},
     title = {Singular quasipotential equation},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {37--48},
     year = {1974},
     volume = {21},
     number = {1},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_1974_21_1_a3/}
}
TY  - JOUR
AU  - V. Sh. Gogokhiya
AU  - A. T. Filippov
TI  - Singular quasipotential equation
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 1974
SP  - 37
EP  - 48
VL  - 21
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/TMF_1974_21_1_a3/
LA  - ru
ID  - TMF_1974_21_1_a3
ER  - 
%0 Journal Article
%A V. Sh. Gogokhiya
%A A. T. Filippov
%T Singular quasipotential equation
%J Teoretičeskaâ i matematičeskaâ fizika
%D 1974
%P 37-48
%V 21
%N 1
%U http://geodesic.mathdoc.fr/item/TMF_1974_21_1_a3/
%G ru
%F TMF_1974_21_1_a3
V. Sh. Gogokhiya; A. T. Filippov. Singular quasipotential equation. Teoretičeskaâ i matematičeskaâ fizika, Tome 21 (1974) no. 1, pp. 37-48. http://geodesic.mathdoc.fr/item/TMF_1974_21_1_a3/

[1] T. D. Lee, Phys. Rev., 128 (1962), 899 ; S. Bernstein, T. D. Lee, Phys. Rev. Lett., 11 (1963), 512 | DOI | MR | Zbl | DOI

[2] S. Okubo, Progr. Theor. Phys., 11 (1954), 80 ; Б. А. Арбузов, Н. М. Атакишиев, А. Т. Филиппов, ЯФ, 7 (1968), 690; 8 (1968), 385; M. K. Volkov, Ann. Phys., 49 (1968), 202 | DOI | MR | Zbl | DOI | MR

[3] G. Feinberg, A. Pais, Phys. Rev., 131 (1963), 2724 ; 133 (1964), B477 | DOI | MR | DOI | MR

[4] B. A. Arbuzov, A. T. Filippov, Phys. Lett., 13 (1964), 95 ; R. Sawyer, Phys. Rev., 134B (1964), 448 ; B. A. Arbuzov, A. T. Filippov, Nuovo Cim., 38 (1965), 796 ; G. Furlan, G. Mahoux, Nuovo Cim., 36 (1965), 215 ; Б. С. Гетманов, А. Т. Филиппов, ТМФ, 8 (1971), 3 | DOI | MR | DOI | MR | DOI | MR | DOI | MR | Zbl

[5] A. T. Filippov, Proc. Top. Conf. Weak Int., Preprint CERN, 69-7, Geneva, 1965 | MR

[6] N. N. Khuri, A. Pais, Rev. Mod. Phys., 36 (1964), 590 ; A. Pais, T. T. Wu, Phys. Rev., 134 (1964), 1303 ; A. Bastai e.a., Nuovo Cim., 30 (1963), 1512 ; 30 (1963), 1532 | DOI | MR | Zbl | DOI | MR | Zbl | DOI | MR | Zbl | DOI | MR | Zbl

[7] A. A. Logunov, A. N. Tavkhelidze, Nuovo Cim., 29 (1963), 380 | DOI | MR

[8] A. T. Filippov, Nelokalnye, nelineinye i nerenormiruemye teorii polya, OIYaI, 1970, 209–220; A. T. Filippov, Phys. Lett., 8 (1964), 78 ; В. Ш. Гогохия, А. Т. Филиппов, ЯФ, 15 (1972), 1294 ; В. Ш. Гогохия, Препринт P2-6687, ОИЯИ, 1972; В. Ш. Гогохия, А. Т. Филиппов, Препринт P2-7142, ОИЯИ, 1973 | DOI | MR | MR

[9] Luke Y. L., The Special Functions and their Approximations, v. I, Academic Press, New-York, London, 1969 | MR | Zbl

[10] N. N. Bogolyubov, D. V. Shirkov, Vvedenie v teoriyu kvantovannykh polei, GITTL, 1957 | MR

[11] A. T. Filippov, Preprint E2-6937, JINR, 1973 | MR