Integral equations for equilibrium distribution functions
Teoretičeskaâ i matematičeskaâ fizika, Tome 21 (1974) no. 1, pp. 146-152
Voir la notice de l'article provenant de la source Math-Net.Ru
By explicit separation of the contribution of one, two,..., $s$ particles to the total potential
energy of $N$ particles, a large number of systems of integral equations are obtained for the
equilibrium distribution functions of simple liquids and gases, including as a special case
the Kirkwood–Salzburg and Mayer–MontrolI systems of equations. Differentiation of the
resulting equations with respect to the coordinate of any particle always leads to the BBGKY
system.
@article{TMF_1974_21_1_a13,
author = {N. K. Bolotin and Yu. P. Yudkin},
title = {Integral equations for equilibrium distribution functions},
journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
pages = {146--152},
publisher = {mathdoc},
volume = {21},
number = {1},
year = {1974},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TMF_1974_21_1_a13/}
}
TY - JOUR AU - N. K. Bolotin AU - Yu. P. Yudkin TI - Integral equations for equilibrium distribution functions JO - Teoretičeskaâ i matematičeskaâ fizika PY - 1974 SP - 146 EP - 152 VL - 21 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/TMF_1974_21_1_a13/ LA - ru ID - TMF_1974_21_1_a13 ER -
N. K. Bolotin; Yu. P. Yudkin. Integral equations for equilibrium distribution functions. Teoretičeskaâ i matematičeskaâ fizika, Tome 21 (1974) no. 1, pp. 146-152. http://geodesic.mathdoc.fr/item/TMF_1974_21_1_a13/