Partial-wave analysis of dual amplitude with mandelstam analyticity
Teoretičeskaâ i matematičeskaâ fizika, Tome 20 (1974) no. 3, pp. 338-352 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The partial-wave projection of the dual amplitude with Mandelstam analyticity is studied. It is shown that the resonances in the model can be completely Reggeized. From the point of view of the structure of the $J$ plane, the preferable class of trajectories consists of those that satisfy the asymptotic bound $O(\ln^{1+\varepsilon}s)\leqslant\vert\alpha(s)\vert\leqslant O(s^{1/2})$, for which the singularities in the $J$ plane are exhausted by poles on the parent and on the daughter trajectory and also at nonsense points with wrong signature. From the point of view of two-particle unitarity, trajectories that take a half-integral value at the threshold are preferable.
@article{TMF_1974_20_3_a6,
     author = {L. L. Enkovskii},
     title = {Partial-wave analysis of dual amplitude with mandelstam analyticity},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {338--352},
     year = {1974},
     volume = {20},
     number = {3},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_1974_20_3_a6/}
}
TY  - JOUR
AU  - L. L. Enkovskii
TI  - Partial-wave analysis of dual amplitude with mandelstam analyticity
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 1974
SP  - 338
EP  - 352
VL  - 20
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/TMF_1974_20_3_a6/
LA  - ru
ID  - TMF_1974_20_3_a6
ER  - 
%0 Journal Article
%A L. L. Enkovskii
%T Partial-wave analysis of dual amplitude with mandelstam analyticity
%J Teoretičeskaâ i matematičeskaâ fizika
%D 1974
%P 338-352
%V 20
%N 3
%U http://geodesic.mathdoc.fr/item/TMF_1974_20_3_a6/
%G ru
%F TMF_1974_20_3_a6
L. L. Enkovskii. Partial-wave analysis of dual amplitude with mandelstam analyticity. Teoretičeskaâ i matematičeskaâ fizika, Tome 20 (1974) no. 3, pp. 338-352. http://geodesic.mathdoc.fr/item/TMF_1974_20_3_a6/

[1] F. Drago, S. Matsuda, Phys. Rev., 181 (1969), 2095 | DOI | MR

[2] D. I. Fivel, P. K. Mitter, Phys. Rev., 183 (1969), 1240 | DOI

[3] G. C. Joshi, A. W. Martin, Phys. Rev., 188 (1969), 2354 | DOI

[4] D. Sivers, J. Yellin, Ann. Phys., 55 (1969), 107 ; Rev. Mod. Phys., 43 (1971), 125 | DOI | MR | DOI | MR

[5] M. L. Paciello, L. Sertorio, B. Taglienti, Nuovo Cim., 62 (1969), 713 | DOI

[6] V. Alessandrini, D. Amati, Phys. Lett., 29B (1969), 193 | DOI

[7] F. Arbab, Phys. Rev., 183 (1969), 1207 | DOI

[8] F. Scheck, Preprint CERN, TH-1030, Geneva, 1969 | MR

[9] R. T. Park, B. R. Desai, Phys. Rev., D2 (1970), 786

[10] D. M. Scott, K. Tanaka, R. Torgersen, Phys. Rev., D2 (1970), 1301

[11] E. P. Tryon, Phys. Rev., D4, 1216; (1971), 1221

[12] K. M. Carpenter, S. M. Negrine, Nuovo Cim., 1A (1971), 13 | DOI

[13] B. K. Chung, D. Feldman, Phys. Rev., D7 (1973), 3721

[14] A. I. Bugrij, L. L. Jenkovszky, N. A. Kobylinsky, Ann. Phys., 31 (1974), 83 | DOI

[15] G. F. Chew, Phys. Rev. Lett., 22 (1969), 364 | DOI

[16] A. I. Bugrij, G. Cohen-Tannoudji, L. L. Jenkovszky, N. A. Kobylinsky, Fortschr. Phys., 21:9 (1973) | DOI | MR

[17] L. Gonsalez, R. Hong Tuan, Preprint LPTHE 72/20, Orsay, 1972

[18] P. Kollinz, Yu. Skvaire, Polyusa Redzhe v fizike chastits, «Mir», 1971

[19] A. I. Bugrij, L. L. Jenkovszky, N. A. Kobylinsky, Nucl. Phys., B35 (1971), 120 | DOI

[20] V. de Alfaro, T. Redzhe, Potentsialnoe rasseyanie, «Mir», 1966 | Zbl

[21] A. O. Barut, D. E. Zwanziger, Phys. Rev., 127 (1963), 974 | DOI | MR

[22] A. I. Bugrij, L. L. Jenkovszky, N. A. Kobylinsky, Preprint ITP-73, Kiev, 1973

[23] M. G. Schmidt, Phys. Lett., 43B (1973), 417 | DOI

[24] D. Branson, Nuovo Cim., 15A (1973), 217 | DOI

[25] A. Krattser, K. Frants, Transtsendentnye funktsii, IL, 1963