Investigation of invariants of a many-particle system by the method of projection operators
Teoretičeskaâ i matematičeskaâ fizika, Tome 20 (1974) no. 3, pp. 413-425 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The projection operator method is used to look for equations that determine invariants of stationary and equilibrium states of a statistical system. The method is based on Bogolyubov's fundamental idea advanced in 1945–1946 that a statistical process of high dimension can be reduced to a sequence of processes of lower dimension. A matrix representation of the Liouville operator with respect to four projection operators is used to split the Liouville equation into equations for the invariants in subspaces of lower dimension, in the derivation of the operator equation for the invariants of the equilibrium states of the system a concrete scheme of projection operators is proposed that employs another of Bogolyubov's ideas: that of successive allowance for a hierarchy of interactions in the system. From a known invariant – the equilibrium distribution function of the canonical ensemble – an integrodifferential equation is obtafned for the radial distribution function of particles in a homogeneous classical fluict, this generalizing Bogolyubov's well-known equation.
@article{TMF_1974_20_3_a11,
     author = {R. M. Yul'met'yev},
     title = {Investigation of invariants of a~many-particle system by the method of projection operators},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {413--425},
     year = {1974},
     volume = {20},
     number = {3},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_1974_20_3_a11/}
}
TY  - JOUR
AU  - R. M. Yul'met'yev
TI  - Investigation of invariants of a many-particle system by the method of projection operators
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 1974
SP  - 413
EP  - 425
VL  - 20
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/TMF_1974_20_3_a11/
LA  - ru
ID  - TMF_1974_20_3_a11
ER  - 
%0 Journal Article
%A R. M. Yul'met'yev
%T Investigation of invariants of a many-particle system by the method of projection operators
%J Teoretičeskaâ i matematičeskaâ fizika
%D 1974
%P 413-425
%V 20
%N 3
%U http://geodesic.mathdoc.fr/item/TMF_1974_20_3_a11/
%G ru
%F TMF_1974_20_3_a11
R. M. Yul'met'yev. Investigation of invariants of a many-particle system by the method of projection operators. Teoretičeskaâ i matematičeskaâ fizika, Tome 20 (1974) no. 3, pp. 413-425. http://geodesic.mathdoc.fr/item/TMF_1974_20_3_a11/

[1] N. N. Bogolyubov, O nekotorykh statisticheskikh metodakh v matematicheskoi fizike, Izd-vo AN USSR, Lvov, 1945 | MR

[2] N. N. Bogolyubov, Problemy dinamicheskoi teorii v statisticheskoi fizike, Gostekhizdat, 1946 | MR

[3] N. M. Krylov, N. N. Bogolyubov, Prilozhenie metodov nelineinoi mekhaniki k teorii statsionarnykh kolebanii, Izd-vo VUAN, Kiev, 1934

[4] N. N. Bogolyubov, Yu. A. Mitropolskii, Asimptoticheskie metody v teorii nelineinykh kolebanii, Fizmatgiz, 1955 ; 1963 | MR

[5] Yu. A. Mitropolskii, O. B. Lykova, Integralnye mnogoobraziya v nelineinoi mekhanike, «Nauka», 1973 | MR

[6] M. A. Krasnoselskii, G. M. Vainikko, P. P. Zabreiko, Ya. B. Rutitskii, V. Ya. Stetsenko, Priblizhennoe reshenie operatornykh uravnenii, «Nauka», 1969 | MR

[7] I. Prigogine, C. George, F. Henin, Proc. Nat. Acad. Sci., 85 (1970), 789 | DOI | MR

[8] R. Balescu, P. Clavin, P. Mandel, J. Turner, Bull. Acad. Roy. Belgique Cl. Sci., 55 (1970), 1055 | MR

[9] A. P. Grecos, Physica, 51 (1971), 50 | DOI | MR

[10] A. P. Grecos, I. Prigogine, Physica, 59 (1972), 77 | DOI | MR

[11] K. Fridrikhs, Vozmuschenie spektra operatorov v gilbertovom prostranstve, «Mir», 1969

[12] W. J. Caspers, Physica, 26 (1960), 778 ; Theory of Spin Relaxation, Interscience Publ., New York, 1964 | DOI | MR | MR

[13] J. A. Tjon, Physica, 30:1 (1964), 1341 ; Phys. Rev., 143 (1966), 259 | DOI | MR | DOI

[14] S. Sauermann, Physica, 32 (1966), 2017 | DOI

[15] R. H. Terwiel, P. Mazur, Physica, 32 (1966), 1813 ; 36 (1967), 289 | DOI | DOI

[16] T. Shimizu, J. Phys. Soc. Japan, 32 (1972), 598

[17] P. Mazur, Physica, 43 (1969), 533 | DOI | MR

[18] M. Suzuki, Physica, 51 (1971), 277 | DOI | MR

[19] T. Shimizu, Progr. Theor. Phys., 47 (1972), 1181 | DOI

[20] R. Zwanzig, J. Chem. Phys., 33 (1960), 1338 ; Phys. Rev., 124 (1961), 983 ; H. Mori, Progr. Theor. Phys., 34 (1965), 399 ; 33 (1965), 423 ; K. Kawasaki, Ann. Phys., 61 (1970), 1 ; T. Shimizu, J. Phys. Soc. Japan, 28, 811 ; 827; (1970), 790 | DOI | MR | DOI | Zbl | DOI | MR | DOI | Zbl | DOI | DOI | DOI

[21] D. N. Zubarev, V. P. Kalashnikov, Physica, 56 (1971), 345 ; Д. Н. Зубарев, М. Ю. Новиков, ТМФ, 13 (1972), 406 ; М. Ю. Новиков, ТМФ, 16 (1973), 394 | DOI | MR

[22] R. Balescu, Physica, 38, 98 ; (1968), 118 ; 54 (1971), 477 ; L. Lugiato, Physica, 49 (1970), 49 ; 44 (1969), 337 ; L. Lanz, G. Ramella, Physica, 44 (1969), 499 ; 45 (1970), 104 ; P. Resibois, J. Brocas, C. Decan, J. Math. Phys., 10 (1969), 964 | DOI | MR | Zbl | DOI | MR | DOI | MR | Zbl | DOI | MR | Zbl | DOI | MR | DOI | MR | DOI

[23] R. M. Yulmetev, UFZh, 12 (1967), 24; 16 (1971), 1524 ; 17 (1972), 761; 15 (1970), 881; 14 (1969), 1898 ; Изв. вузов, физика, 1968, No 9, 19 | MR | MR

[24] R. M. Yulmetev, Phys. Lett., 43A (1973), 115

[25] F. Rösler, K. L. Drechsler, Phys. Lett., 27A (1968), 231 | DOI

[26] R. Peierls, Proc. Roy. Soc. London, A333 (1973), 157 | DOI | MR

[27] I. Z. Fisher, Statisticheskaya teoriya zhidkostei, GIFML, 1961

[28] R. M. Yulmetev, Izv. vuzov, fizika, 1970, no. 9, 68

[29] L. D. Landau, ZhETF, 7 (1937), 293

[30] K. P. Gurov, Osnovaniya kineticheskoi teorii (metod N. N. Bogolyubova), «Nauka», 1966