Generalization of Wigner's theorem on symmetries in the $C^*$-algebraic approach
    
    
  
  
  
      
      
      
        
Teoretičeskaâ i matematičeskaâ fizika, Tome 20 (1974) no. 2, pp. 177-180
    
  
  
  
  
  
    
      
      
        
      
      
      
    Voir la notice de l'article provenant de la source Math-Net.Ru
            
              			On the basis of the abstract algebraic definition of a probability of transition between pure states the following generalization of Wigner's theorem is proved: the $C^*$-algebras of observables $\mathfrak A_1$ and $\mathfrak A_2$ are related by a symmetry transformation if and only if there exists a one-to-one mapping of the set of pure states over $\mathfrak A_1$ onto the set of pure states over $\mathfrak A_2$ that preserves the probability of the transition.
			
            
            
            
          
        
      @article{TMF_1974_20_2_a3,
     author = {S. G. Kharatyan},
     title = {Generalization of {Wigner's} theorem on symmetries in the $C^*$-algebraic approach},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {177--180},
     publisher = {mathdoc},
     volume = {20},
     number = {2},
     year = {1974},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_1974_20_2_a3/}
}
                      
                      
                    TY - JOUR AU - S. G. Kharatyan TI - Generalization of Wigner's theorem on symmetries in the $C^*$-algebraic approach JO - Teoretičeskaâ i matematičeskaâ fizika PY - 1974 SP - 177 EP - 180 VL - 20 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/TMF_1974_20_2_a3/ LA - ru ID - TMF_1974_20_2_a3 ER -
S. G. Kharatyan. Generalization of Wigner's theorem on symmetries in the $C^*$-algebraic approach. Teoretičeskaâ i matematičeskaâ fizika, Tome 20 (1974) no. 2, pp. 177-180. http://geodesic.mathdoc.fr/item/TMF_1974_20_2_a3/
