Diagrammatic technique for calculating nonlinear susceptibilities
Teoretičeskaâ i matematičeskaâ fizika, Tome 20 (1974) no. 2, pp. 265-273 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

Rules of a diagrammatic technique are formulated for calculating quadratic susceptibilities at $T=0$ and $T\not=0$. When $T\not=0$, the nonlinear susceptibilities are obtained by analytic continuation of the Matsubara function $K^c(\omega_{n_1},\omega_{n_2})$. Analytic continuation with respect to two frequencies can be made in each diagram as in [1]. Rules of the diagrammatic technique are also formulated for the double spectral densities, which determine all possible constructions of three pairs of operators: three-particle correlation functions, cross sections of three-quantum processes, nonlinear susceptibilities, etc. Unitarity relations for the double spectral densities are obtained.
@article{TMF_1974_20_2_a11,
     author = {V. Ya. Demikhovskii and A. P. Kopasov},
     title = {Diagrammatic technique for calculating nonlinear susceptibilities},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {265--273},
     year = {1974},
     volume = {20},
     number = {2},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_1974_20_2_a11/}
}
TY  - JOUR
AU  - V. Ya. Demikhovskii
AU  - A. P. Kopasov
TI  - Diagrammatic technique for calculating nonlinear susceptibilities
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 1974
SP  - 265
EP  - 273
VL  - 20
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/TMF_1974_20_2_a11/
LA  - ru
ID  - TMF_1974_20_2_a11
ER  - 
%0 Journal Article
%A V. Ya. Demikhovskii
%A A. P. Kopasov
%T Diagrammatic technique for calculating nonlinear susceptibilities
%J Teoretičeskaâ i matematičeskaâ fizika
%D 1974
%P 265-273
%V 20
%N 2
%U http://geodesic.mathdoc.fr/item/TMF_1974_20_2_a11/
%G ru
%F TMF_1974_20_2_a11
V. Ya. Demikhovskii; A. P. Kopasov. Diagrammatic technique for calculating nonlinear susceptibilities. Teoretičeskaâ i matematičeskaâ fizika, Tome 20 (1974) no. 2, pp. 265-273. http://geodesic.mathdoc.fr/item/TMF_1974_20_2_a11/

[1] D. N. Zubarev, UFN, 71 (1960), 71 | DOI | MR

[2] S. V. Tyablikov, Pu Fu-cho, FTT, 3 (1961), 142

[3] I. E. Dzyaloshinskii, ZhETF, 42 (1962), 1126 | MR

[4] O. V. Konstantinov, V. I. Perel, ZhETF, 39 (1960), 197 | MR | Zbl

[5] L. V. Keldysh, ZhETF, 47 (1964), 1515

[6] V. L. Bonch-Bruevich, DAN SSSR, 129 (1959), 529 | MR | Zbl

[7] A. K. Raiagopal, M. H. Cohen, Proceed. Indian Acad. Sci., Sec. A, LXXI:4 (1970), 149

[8] G. Baym, A. Sessler, Phys. Rev., 131 (1963), 2345 | DOI | MR

[9] A. M. Polyakov, ZhETF, 57 (1969), 2144