Thermodynamic limit for many-temperature mixtures of classical neutral particles
    
    
  
  
  
      
      
      
        
Teoretičeskaâ i matematičeskaâ fizika, Tome 20 (1974) no. 1, pp. 100-111
    
  
  
  
  
  
    
      
      
        
      
      
      
    Voir la notice de l'article provenant de la source Math-Net.Ru
            
              			The existence of a thermodynamic limit (Van Hove's theorem) is proved for classical systems of neutral particles under more general assumptions than hitherto adopted. Namely, manytemperature systems, i.e., systems in which there are restrictions on the exchange of energy between certain degrees of freedom (say translational and vibrational) are considered. In addition, the conditions on the interaction potential under which the theorem proved is true and discussed. In particular, it is shown that the thermodynamic limit in the configuration
microeanonical ensemble exists without the assumption of stability of the interaction. All the proofs are given for mixtures of partices of several species.
			
            
            
            
          
        
      @article{TMF_1974_20_1_a9,
     author = {S. S. Vallander},
     title = {Thermodynamic limit for many-temperature mixtures of classical neutral particles},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {100--111},
     publisher = {mathdoc},
     volume = {20},
     number = {1},
     year = {1974},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_1974_20_1_a9/}
}
                      
                      
                    TY - JOUR AU - S. S. Vallander TI - Thermodynamic limit for many-temperature mixtures of classical neutral particles JO - Teoretičeskaâ i matematičeskaâ fizika PY - 1974 SP - 100 EP - 111 VL - 20 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/TMF_1974_20_1_a9/ LA - ru ID - TMF_1974_20_1_a9 ER -
S. S. Vallander. Thermodynamic limit for many-temperature mixtures of classical neutral particles. Teoretičeskaâ i matematičeskaâ fizika, Tome 20 (1974) no. 1, pp. 100-111. http://geodesic.mathdoc.fr/item/TMF_1974_20_1_a9/
