Existence theorem for solutions of the Bogolyubov equations
Teoretičeskaâ i matematičeskaâ fizika, Tome 19 (1974) no. 3, pp. 344-363 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

An existence theorem is proved for a weak solution of Bogolyubov' s system of kinetic equations [1, 2] for small perturbations of the equilibrium Gibbs distribution in the case of onedimensional statistical mechanics.
@article{TMF_1974_19_3_a6,
     author = {Ya. G. Sinai and Yu. M. Sukhov},
     title = {Existence theorem for solutions of the {Bogolyubov} equations},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {344--363},
     year = {1974},
     volume = {19},
     number = {3},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_1974_19_3_a6/}
}
TY  - JOUR
AU  - Ya. G. Sinai
AU  - Yu. M. Sukhov
TI  - Existence theorem for solutions of the Bogolyubov equations
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 1974
SP  - 344
EP  - 363
VL  - 19
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/TMF_1974_19_3_a6/
LA  - ru
ID  - TMF_1974_19_3_a6
ER  - 
%0 Journal Article
%A Ya. G. Sinai
%A Yu. M. Sukhov
%T Existence theorem for solutions of the Bogolyubov equations
%J Teoretičeskaâ i matematičeskaâ fizika
%D 1974
%P 344-363
%V 19
%N 3
%U http://geodesic.mathdoc.fr/item/TMF_1974_19_3_a6/
%G ru
%F TMF_1974_19_3_a6
Ya. G. Sinai; Yu. M. Sukhov. Existence theorem for solutions of the Bogolyubov equations. Teoretičeskaâ i matematičeskaâ fizika, Tome 19 (1974) no. 3, pp. 344-363. http://geodesic.mathdoc.fr/item/TMF_1974_19_3_a6/

[1] N. N. Bogolyubov, ZhETF, 16, 681 ; (1946), 691 | MR | Zbl

[2] N. N. Bogolyubov, Problemy dinamicheskoi teorii v statisticheskoi fizike, Gostekhizdat, 1946 | MR

[3] Dzh. Ulenbek, Dzh. Ford, Lektsii po statisticheskoi mekhanike, «Mir», 1965

[4] Dzh. Ulenbek, V kn.: M. Kats, Veroyatnost i smezhnye voprosy v fizike, «Mir», 1965

[5] O. E. Lanford, Commun. Math. Phys., 9 (1968), 126 ; 11 (1969), 257 | MR | DOI | MR | Zbl

[6] Ya. G. Sinai, TMF, 11 (1972), 248 | MR

[7] A. N. Zemlyakov, UMN, 28 (1973), 247

[8] Ya. G. Sinai, Vestn. MGU, ser. matem. i mekh., 1974, no. 1, 152 | MR

[9] B. M. Gurevich, Ya. G. Sinai, Yu. M. Sukhov, UMN, 28:5 (1973), 45 | MR | Zbl

[10] G. Gallavotti, O. E. Lanford, J. L. Lebowitz, J. Math. Phys., 11 (1970), 2898 | DOI | MR

[11] D. Ya. Petrina, TMF, 13 (1972), 391 | MR

[12] D. Ja. Petrina, O. K. Vidybida, Preprint ITF 73-58E, 1973

[13] R. L. Dobrushin, Funktsionalnyi analiz i ego prilozheniya, 3:1 (1969), 27–35 | MR | Zbl

[14] Yu. M. Sukhov, Tr. Mosk. matem. o-va, 24 (1971), 175 | MR | Zbl

[15] A. Khaitov, Tr. Mosk. matem. o-va, 28 (1973) | MR | Zbl