On the complete integrability of a~nonlinear Schr\"odinger equation
Teoretičeskaâ i matematičeskaâ fizika, Tome 19 (1974) no. 3, pp. 332-343
Voir la notice de l'article provenant de la source Math-Net.Ru
It is shown that a nonlinear Schrödinger equation, regarded as the Hamiltonian of a system, is completely integrable. A transition to angle and action variables is made by means of the $S$-matrix of the one-dimensional Dirae operator.
@article{TMF_1974_19_3_a5,
author = {V. E. Zakharov and S. V. Manakov},
title = {On the complete integrability of a~nonlinear {Schr\"odinger} equation},
journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
pages = {332--343},
publisher = {mathdoc},
volume = {19},
number = {3},
year = {1974},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TMF_1974_19_3_a5/}
}
TY - JOUR AU - V. E. Zakharov AU - S. V. Manakov TI - On the complete integrability of a~nonlinear Schr\"odinger equation JO - Teoretičeskaâ i matematičeskaâ fizika PY - 1974 SP - 332 EP - 343 VL - 19 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/TMF_1974_19_3_a5/ LA - ru ID - TMF_1974_19_3_a5 ER -
V. E. Zakharov; S. V. Manakov. On the complete integrability of a~nonlinear Schr\"odinger equation. Teoretičeskaâ i matematičeskaâ fizika, Tome 19 (1974) no. 3, pp. 332-343. http://geodesic.mathdoc.fr/item/TMF_1974_19_3_a5/