On the complete integrability of a nonlinear Schrödinger equation
Teoretičeskaâ i matematičeskaâ fizika, Tome 19 (1974) no. 3, pp. 332-343
Cet article a éte moissonné depuis la source Math-Net.Ru
It is shown that a nonlinear Schrödinger equation, regarded as the Hamiltonian of a system, is completely integrable. A transition to angle and action variables is made by means of the $S$-matrix of the one-dimensional Dirae operator.
@article{TMF_1974_19_3_a5,
author = {V. E. Zakharov and S. V. Manakov},
title = {On the complete integrability of a~nonlinear {Schr\"odinger} equation},
journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
pages = {332--343},
year = {1974},
volume = {19},
number = {3},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TMF_1974_19_3_a5/}
}
V. E. Zakharov; S. V. Manakov. On the complete integrability of a nonlinear Schrödinger equation. Teoretičeskaâ i matematičeskaâ fizika, Tome 19 (1974) no. 3, pp. 332-343. http://geodesic.mathdoc.fr/item/TMF_1974_19_3_a5/
[1] C. Gardner, G. Green, M. Kraskal, R. Miura, Phys. Rev. Lett., 19 (1967), 1095 | DOI
[2] V. E. Zakharov, A. B. Shabat, ZhETF, 61 (1971), 118
[3] V. E. Zakharov, A. B. Shabat, ZhETF (to appear) | Zbl
[4] E. P. Gross, Phys. Rev., 106 (1957), 161 | DOI | Zbl
[5] L. P. Pitaevskii, ZhETF, 40 (1961), 646
[6] P. L. Kelley, Phys. Rev. Lett., 15 (1965), 1005 | DOI | MR
[7] V. I. Karpman, Pisma ZhETF, 6 (1967), 329
[8] V. E. Zakharov, L. D. Faddeev, Funktsionalnyi analiz, 5:4 (1971), 18 | MR | Zbl
[9] L. A. Takhtadzhyan, Diplomnaya rabota, LGU, 1972
[10] V. A. Marchenko, Spektralnaya teoriya operatorov Shturma-Liuvillya, «Naukova dumka», Kiev, 1972 | MR | Zbl