Mobility of a particle in a one-dimensional lattice with allowance for some anharmonic effects
Teoretičeskaâ i matematičeskaâ fizika, Tome 19 (1974) no. 3, pp. 400-413 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The method of two-time Green's functions [1, 2] is used to derive equations of Fokker–Planck type in the case of a system consisting of a one-dimensional lattice and an impurity (anharmonic) particle. In accordance with this equation, the anharmonicity of the particle vibration influences the relaxation processes due to the interference of the anharmonic interaction with the elastic scattering of phonons. An expression is obtained for the diffusion coefficient of an anharmonic particle.
@article{TMF_1974_19_3_a10,
     author = {Yu. A. Kashlev},
     title = {Mobility of a~particle in a~one-dimensional lattice with allowance for some anharmonic effects},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {400--413},
     year = {1974},
     volume = {19},
     number = {3},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_1974_19_3_a10/}
}
TY  - JOUR
AU  - Yu. A. Kashlev
TI  - Mobility of a particle in a one-dimensional lattice with allowance for some anharmonic effects
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 1974
SP  - 400
EP  - 413
VL  - 19
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/TMF_1974_19_3_a10/
LA  - ru
ID  - TMF_1974_19_3_a10
ER  - 
%0 Journal Article
%A Yu. A. Kashlev
%T Mobility of a particle in a one-dimensional lattice with allowance for some anharmonic effects
%J Teoretičeskaâ i matematičeskaâ fizika
%D 1974
%P 400-413
%V 19
%N 3
%U http://geodesic.mathdoc.fr/item/TMF_1974_19_3_a10/
%G ru
%F TMF_1974_19_3_a10
Yu. A. Kashlev. Mobility of a particle in a one-dimensional lattice with allowance for some anharmonic effects. Teoretičeskaâ i matematičeskaâ fizika, Tome 19 (1974) no. 3, pp. 400-413. http://geodesic.mathdoc.fr/item/TMF_1974_19_3_a10/

[1] D. N. Zubarev, UFN, 71 (1960), 71 | DOI | MR

[2] D. N. Zubarev, Neravnovesnaya statisticheskaya termodinamika, «Nauka», 1971

[3] P. Gosar, Nuovo Cim., 31 (1964), 781 | DOI

[4] G. F. Nardelli, L. Reatto, Physica, 31 (1965), 541 ; B. Pegel, D. Lepski, Phys. Stat. Sol., 23 (1967), 335 | DOI | MR | DOI

[5] Yu. A. Kashlev, FMM, 31 (1971), 1149

[6] C. A. Wert, C. Zener, Phys. Rev., 76 (1949), 1169 | DOI

[7] M. Gomez-Rodriguez, Phys. Rev., 2 (1970), 4262 | DOI

[8] B. Pegel, Phys. Stat. Sol., 22 (1967), 223 | DOI

[9] W. M. Franklin, J. Phys. Chem. Solids, 28 (1967), 829 ; Phys. Rev., 180 (1969), 682 | DOI | DOI

[10] T. Prigogine, T. A. Bak, J. Chem. Phys., 31 (1959), 1368 | DOI | MR

[11] R. P. Bell, Trans. Faradey Soc., 55 (1959), 1 | DOI

[12] J. Coldstone, Proc. Roy. Soc., A239 (1957), 268

[13] A. D. Le Claire, Phil. Mag., 14 (1966), 1271 | DOI

[14] K. Yamada, Progr. Theor. Phys., 28 (1962), 299 | DOI | MR | Zbl

[15] W. Kohn, J. M. Luttinger, Phys. Rev., 108 (1957), 590 | DOI | MR

[16] K. H. Michel, Physica, 30 (1964), 2194 | DOI | MR | Zbl

[17] T. Geszti, Phys. Stat. Sol., 20 (1967), 165 | DOI

[18] N. N. Bogolyubov, Problemy dinamicheskoi teorii v statisticheskoi fizike, Gostekhizdat, 1946 | MR

[19] Y. Ebisuzaki, W. T. Kavs, M. O. Keffe, J. Chem. Phys., 46 (1967), 1373 | DOI

[20] T. Yamamoto, J. Chem. Phys., 33 (1960), 281 | DOI | MR

[21] R. Kubo, M. Yokota, S. Nakajima, J. Phys. Soc. Japan, 12 (1957), 1203 | DOI | MR | Zbl

[22] W. P. Jencks, Catalysis in chemistry and enzymology, N. Y., 1969

[23] G. Schottky, Phys. Stat. Sol., 8 (1965), 357 | DOI

[24] H. R. Glyde, Phys. Rev., 180 (1969), 722 | DOI