Coordinate asymptotic behavior of the solution of the scattering problem for the Schr\"odinger equation
Teoretičeskaâ i matematičeskaâ fizika, Tome 19 (1974) no. 2, pp. 217-232
Voir la notice de l'article provenant de la source Math-Net.Ru
A study is made of the asymptotic behavior of the solution of the scattering problem for a multidimensional Schrödinger equation as $x\to\infty$. The potential is assumed to vary smoothly and decrease more rapidly than the Coulomb potential. The asymptotic behavior of the solution of the scattering problem corresponding to the plane wave eikx contains special functions
in the neighborhood of the direction of $k$. The singularities of the scattering amplitude are described; these also arise only in this direction.
@article{TMF_1974_19_2_a7,
author = {V. S. Buslaev and M. M. Skriganov},
title = {Coordinate asymptotic behavior of the solution of the scattering problem for the {Schr\"odinger} equation},
journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
pages = {217--232},
publisher = {mathdoc},
volume = {19},
number = {2},
year = {1974},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TMF_1974_19_2_a7/}
}
TY - JOUR AU - V. S. Buslaev AU - M. M. Skriganov TI - Coordinate asymptotic behavior of the solution of the scattering problem for the Schr\"odinger equation JO - Teoretičeskaâ i matematičeskaâ fizika PY - 1974 SP - 217 EP - 232 VL - 19 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/TMF_1974_19_2_a7/ LA - ru ID - TMF_1974_19_2_a7 ER -
%0 Journal Article %A V. S. Buslaev %A M. M. Skriganov %T Coordinate asymptotic behavior of the solution of the scattering problem for the Schr\"odinger equation %J Teoretičeskaâ i matematičeskaâ fizika %D 1974 %P 217-232 %V 19 %N 2 %I mathdoc %U http://geodesic.mathdoc.fr/item/TMF_1974_19_2_a7/ %G ru %F TMF_1974_19_2_a7
V. S. Buslaev; M. M. Skriganov. Coordinate asymptotic behavior of the solution of the scattering problem for the Schr\"odinger equation. Teoretičeskaâ i matematičeskaâ fizika, Tome 19 (1974) no. 2, pp. 217-232. http://geodesic.mathdoc.fr/item/TMF_1974_19_2_a7/