Equations for higher Legendre transforms in terms of 1-irreducible vertices
Teoretičeskaâ i matematičeskaâ fizika, Tome 19 (1974) no. 2, pp. 186-200 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

For the functional Legendre transforms [2, 3] of arbitrary order equations are obtained in which 1-irreducible (and not simply connected) vertices are regarded as independent variables; their iterative solution is represented by skeleton graphs with 1-irreducible $n$-leg diagrams at their vertices. In this manner any $n$-leg vertex can be represented as the sum of a “bare” vertex and skeleton graphs of this type.
@article{TMF_1974_19_2_a4,
     author = {A. N. Vasil'ev and A. K. Kazanskii and Yu. M. Pis'mak},
     title = {Equations for higher {Legendre} transforms in terms of 1-irreducible vertices},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {186--200},
     year = {1974},
     volume = {19},
     number = {2},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_1974_19_2_a4/}
}
TY  - JOUR
AU  - A. N. Vasil'ev
AU  - A. K. Kazanskii
AU  - Yu. M. Pis'mak
TI  - Equations for higher Legendre transforms in terms of 1-irreducible vertices
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 1974
SP  - 186
EP  - 200
VL  - 19
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/TMF_1974_19_2_a4/
LA  - ru
ID  - TMF_1974_19_2_a4
ER  - 
%0 Journal Article
%A A. N. Vasil'ev
%A A. K. Kazanskii
%A Yu. M. Pis'mak
%T Equations for higher Legendre transforms in terms of 1-irreducible vertices
%J Teoretičeskaâ i matematičeskaâ fizika
%D 1974
%P 186-200
%V 19
%N 2
%U http://geodesic.mathdoc.fr/item/TMF_1974_19_2_a4/
%G ru
%F TMF_1974_19_2_a4
A. N. Vasil'ev; A. K. Kazanskii; Yu. M. Pis'mak. Equations for higher Legendre transforms in terms of 1-irreducible vertices. Teoretičeskaâ i matematičeskaâ fizika, Tome 19 (1974) no. 2, pp. 186-200. http://geodesic.mathdoc.fr/item/TMF_1974_19_2_a4/

[1] A. N. Vasilev, A. K. Kazanskii, TMF, 14 (1973), 289 | MR

[2] A. N. Vasilev, A. K. Kazanskii, TMF, 12 (1972), 352

[3] C. de Dominicis, J. Math. Phys., 3 (1962), 983 ; C. de Dominicis, P. C. Martin, J. Math. Phys., 5, 14 ; (1964), 31 | DOI | DOI | DOI

[4] Yu. M. Pismak, TMF, 18 (1974), 299 | MR