Structure of canonical variables in the theory of quantum systems with finitely and infinitely many degrees of freedom
Teoretičeskaâ i matematičeskaâ fizika, Tome 19 (1974) no. 1, pp. 27-36 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

It is shown that any representation Of canonical variables, (i.e., a representation of the canonical commutation relations in the Heisenberg form) is a direct integral of irreducible (factor) representations; no assumptions are made concerning the possibility of a transition to the Weyl form of the commutation relations. This theorem is applied to the construction of decompositions into irreducible (factor) representations of any finite-dimensional and some inifinitedimensional Lie algebras by unbounded operators in Hilbert space. The need for such decompositions arises in the harmonic analysis of unitary representations of the corresponding Lie groups.
@article{TMF_1974_19_1_a2,
     author = {N. V. Borisov},
     title = {Structure of canonical variables in the theory of quantum systems with finitely and infinitely many degrees of freedom},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {27--36},
     year = {1974},
     volume = {19},
     number = {1},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_1974_19_1_a2/}
}
TY  - JOUR
AU  - N. V. Borisov
TI  - Structure of canonical variables in the theory of quantum systems with finitely and infinitely many degrees of freedom
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 1974
SP  - 27
EP  - 36
VL  - 19
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/TMF_1974_19_1_a2/
LA  - ru
ID  - TMF_1974_19_1_a2
ER  - 
%0 Journal Article
%A N. V. Borisov
%T Structure of canonical variables in the theory of quantum systems with finitely and infinitely many degrees of freedom
%J Teoretičeskaâ i matematičeskaâ fizika
%D 1974
%P 27-36
%V 19
%N 1
%U http://geodesic.mathdoc.fr/item/TMF_1974_19_1_a2/
%G ru
%F TMF_1974_19_1_a2
N. V. Borisov. Structure of canonical variables in the theory of quantum systems with finitely and infinitely many degrees of freedom. Teoretičeskaâ i matematičeskaâ fizika, Tome 19 (1974) no. 1, pp. 27-36. http://geodesic.mathdoc.fr/item/TMF_1974_19_1_a2/

[1] H. Araki, E. J. Woods, J. Math. Phys., 4 (1963), 637 | DOI | MR

[2] N. M. Hugenholtz, Commun. Math. Phys., 6 (1967), 189 | DOI | MR | Zbl

[3] I. E. Segal, Cargese Lectures in Theoretical Physics, N-Y, 1967

[4] A. N. Vasilev, TMF, 2 (1970), 153 | MR

[5] R. T. Powers, Commun. Math. Phys., 21 (1971), 85 | DOI | MR | Zbl

[6] N. Dzhekobson, Algebry Li, «Mir», 1964 | MR

[7] A. E. Nussbaum, Duke math. Journal, 31 (1964), 33 | DOI | MR | Zbl

[8] A. N. Plesner, Spektralnaya teoriya lineinykh operatorov, «Nauka», 1965 | MR | Zbl

[9] N. V. Borisov, TMF, 11 (1972), 19 | MR | Zbl

[10] M. H. Stone, J. Indian math. Soc., 15(B) (1951–1952), 155 | MR

[11] N. V. Borisov, A. M. Reikhert, Vestn. LGU (to appear)

[12] M. A. Naimark, Normirovannye koltsa, «Nauka», 1968 | MR | Zbl

[13] P. J. Dixon, Proc. London math. Soc., (3), 23 (1) (1971), 53 | DOI | MR | Zbl

[14] V. S. Varadarajan, Geometry of Quantum Theory, v. 2, N-Y., 1970 | MR | Zbl