Structure of canonical variables in the theory of quantum systems with finitely and infinitely many degrees of freedom
Teoretičeskaâ i matematičeskaâ fizika, Tome 19 (1974) no. 1, pp. 27-36
Voir la notice de l'article provenant de la source Math-Net.Ru
It is shown that any representation Of canonical variables, (i.e., a representation of the canonical commutation relations in the Heisenberg form) is a direct integral of irreducible (factor) representations; no assumptions are made concerning the possibility of a transition to the Weyl form of the commutation relations. This theorem is applied to the construction of decompositions into irreducible (factor) representations of any finite-dimensional and some inifinitedimensional Lie algebras by unbounded operators in Hilbert space. The need for such decompositions arises in the harmonic analysis of unitary representations of the corresponding Lie groups.
@article{TMF_1974_19_1_a2,
author = {N. V. Borisov},
title = {Structure of canonical variables in the theory of quantum systems with finitely and infinitely many degrees of freedom},
journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
pages = {27--36},
publisher = {mathdoc},
volume = {19},
number = {1},
year = {1974},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TMF_1974_19_1_a2/}
}
TY - JOUR AU - N. V. Borisov TI - Structure of canonical variables in the theory of quantum systems with finitely and infinitely many degrees of freedom JO - Teoretičeskaâ i matematičeskaâ fizika PY - 1974 SP - 27 EP - 36 VL - 19 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/TMF_1974_19_1_a2/ LA - ru ID - TMF_1974_19_1_a2 ER -
%0 Journal Article %A N. V. Borisov %T Structure of canonical variables in the theory of quantum systems with finitely and infinitely many degrees of freedom %J Teoretičeskaâ i matematičeskaâ fizika %D 1974 %P 27-36 %V 19 %N 1 %I mathdoc %U http://geodesic.mathdoc.fr/item/TMF_1974_19_1_a2/ %G ru %F TMF_1974_19_1_a2
N. V. Borisov. Structure of canonical variables in the theory of quantum systems with finitely and infinitely many degrees of freedom. Teoretičeskaâ i matematičeskaâ fizika, Tome 19 (1974) no. 1, pp. 27-36. http://geodesic.mathdoc.fr/item/TMF_1974_19_1_a2/