Nonlinear generalization of Mori's method of projection operators
Teoretičeskaâ i matematičeskaâ fizika, Tome 18 (1974) no. 3, pp. 383-392
Cet article a éte moissonné depuis la source Math-Net.Ru
Mori's technique of projection operators is used as the basis for a consistent separation from the microscopic expressions of secular contributions associated with the densities of conserved quantities. Additional conserved quantities that are quadratic combinations of the ordinary hydrodynamic variables are added to Mori's scheme. This makes it possible to go beyond linear processes. In contrast to Kawasaki's equations, the results obtained here agree with ordinary linear hydrodynamics. Boundary conditions of retarded type are introduced into Mori's equations, which render them translationally invariant with respect to the time.
@article{TMF_1974_18_3_a9,
author = {L. Ts. Adzhemyan and F. M. Kuni and T. Yu. Novozhilova},
title = {Nonlinear generalization of {Mori's} method of projection operators},
journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
pages = {383--392},
year = {1974},
volume = {18},
number = {3},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TMF_1974_18_3_a9/}
}
TY - JOUR AU - L. Ts. Adzhemyan AU - F. M. Kuni AU - T. Yu. Novozhilova TI - Nonlinear generalization of Mori's method of projection operators JO - Teoretičeskaâ i matematičeskaâ fizika PY - 1974 SP - 383 EP - 392 VL - 18 IS - 3 UR - http://geodesic.mathdoc.fr/item/TMF_1974_18_3_a9/ LA - ru ID - TMF_1974_18_3_a9 ER -
L. Ts. Adzhemyan; F. M. Kuni; T. Yu. Novozhilova. Nonlinear generalization of Mori's method of projection operators. Teoretičeskaâ i matematičeskaâ fizika, Tome 18 (1974) no. 3, pp. 383-392. http://geodesic.mathdoc.fr/item/TMF_1974_18_3_a9/
[1] H. Mori, Progr. Theor. Phys., 33 (1965), 423 | DOI | MR | Zbl
[2] J. Dufty, Phys. Rev., 176 (1968), 398 | DOI | Zbl
[3] H. Mori, Progr. Theor. Phys., 34 (1965), 399 | DOI | MR
[4] K. Kawasaki, Ann. Phys., 61 (1970), 1 | DOI
[5] D. N. Zubarev, Neravnovesnaya statisticheskaya termodinamika, «Nauka», 1971
[6] D. N. Zubarev, M. Yu. Novikov, TMF, 13 (1972), 406