Algorithm of Rayleigh--Schr\"odinger perturbation theory for hermitian operators
    
    
  
  
  
      
      
      
        
Teoretičeskaâ i matematičeskaâ fizika, Tome 18 (1974) no. 3, pp. 374-382
    
  
  
  
  
  
    
      
      
        
      
      
      
    Voir la notice de l'article provenant de la source Math-Net.Ru
            
              			A simple algorithm of perturbation theory is obtained for an Hermitian operator $H=H^0+V$,
where $V=A_1+A_2+\dots+A_n+\cdots$ and $A_n$ is an operator of $n$-th order with respect to a set of small parameters. The multiplicity of degeneracy of the unperturbed level is arbitrary.
The scheme can be used, for example, in the problem of vibrational-rotational
coupling in molecules. This is illustrated for the example of a triatomic linear symmetric
molecule.
			
            
            
            
          
        
      @article{TMF_1974_18_3_a8,
     author = {Yu. I. Polyakov},
     title = {Algorithm of {Rayleigh--Schr\"odinger} perturbation theory for hermitian operators},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {374--382},
     publisher = {mathdoc},
     volume = {18},
     number = {3},
     year = {1974},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_1974_18_3_a8/}
}
                      
                      
                    TY - JOUR AU - Yu. I. Polyakov TI - Algorithm of Rayleigh--Schr\"odinger perturbation theory for hermitian operators JO - Teoretičeskaâ i matematičeskaâ fizika PY - 1974 SP - 374 EP - 382 VL - 18 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/TMF_1974_18_3_a8/ LA - ru ID - TMF_1974_18_3_a8 ER -
Yu. I. Polyakov. Algorithm of Rayleigh--Schr\"odinger perturbation theory for hermitian operators. Teoretičeskaâ i matematičeskaâ fizika, Tome 18 (1974) no. 3, pp. 374-382. http://geodesic.mathdoc.fr/item/TMF_1974_18_3_a8/
