Algorithm of Rayleigh--Schr\"odinger perturbation theory for hermitian operators
Teoretičeskaâ i matematičeskaâ fizika, Tome 18 (1974) no. 3, pp. 374-382

Voir la notice de l'article provenant de la source Math-Net.Ru

A simple algorithm of perturbation theory is obtained for an Hermitian operator $H=H^0+V$, where $V=A_1+A_2+\dots+A_n+\cdots$ and $A_n$ is an operator of $n$-th order with respect to a set of small parameters. The multiplicity of degeneracy of the unperturbed level is arbitrary. The scheme can be used, for example, in the problem of vibrational-rotational coupling in molecules. This is illustrated for the example of a triatomic linear symmetric molecule.
@article{TMF_1974_18_3_a8,
     author = {Yu. I. Polyakov},
     title = {Algorithm of {Rayleigh--Schr\"odinger} perturbation theory for hermitian operators},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {374--382},
     publisher = {mathdoc},
     volume = {18},
     number = {3},
     year = {1974},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_1974_18_3_a8/}
}
TY  - JOUR
AU  - Yu. I. Polyakov
TI  - Algorithm of Rayleigh--Schr\"odinger perturbation theory for hermitian operators
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 1974
SP  - 374
EP  - 382
VL  - 18
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TMF_1974_18_3_a8/
LA  - ru
ID  - TMF_1974_18_3_a8
ER  - 
%0 Journal Article
%A Yu. I. Polyakov
%T Algorithm of Rayleigh--Schr\"odinger perturbation theory for hermitian operators
%J Teoretičeskaâ i matematičeskaâ fizika
%D 1974
%P 374-382
%V 18
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TMF_1974_18_3_a8/
%G ru
%F TMF_1974_18_3_a8
Yu. I. Polyakov. Algorithm of Rayleigh--Schr\"odinger perturbation theory for hermitian operators. Teoretičeskaâ i matematičeskaâ fizika, Tome 18 (1974) no. 3, pp. 374-382. http://geodesic.mathdoc.fr/item/TMF_1974_18_3_a8/