Coefficients of vector addition of class II representations of $SU(n)$
Teoretičeskaâ i matematičeskaâ fizika, Tome 18 (1974) no. 3, pp. 367-373 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The tree method is used to obtain a formula for the coefficients of vector addition of class II representations of $SU(n)$. It is shown that the coefficients of vector addition of $SU(n)$ are determined by the Clebsch–Gordan coefficients of $SU(2)$ and the hypergeometric functions $_3F_2$ of unit argument.
@article{TMF_1974_18_3_a7,
     author = {G. I. Kuznetsov},
     title = {Coefficients of vector addition of {class~II} representations of $SU(n)$},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {367--373},
     year = {1974},
     volume = {18},
     number = {3},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_1974_18_3_a7/}
}
TY  - JOUR
AU  - G. I. Kuznetsov
TI  - Coefficients of vector addition of class II representations of $SU(n)$
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 1974
SP  - 367
EP  - 373
VL  - 18
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/TMF_1974_18_3_a7/
LA  - ru
ID  - TMF_1974_18_3_a7
ER  - 
%0 Journal Article
%A G. I. Kuznetsov
%T Coefficients of vector addition of class II representations of $SU(n)$
%J Teoretičeskaâ i matematičeskaâ fizika
%D 1974
%P 367-373
%V 18
%N 3
%U http://geodesic.mathdoc.fr/item/TMF_1974_18_3_a7/
%G ru
%F TMF_1974_18_3_a7
G. I. Kuznetsov. Coefficients of vector addition of class II representations of $SU(n)$. Teoretičeskaâ i matematičeskaâ fizika, Tome 18 (1974) no. 3, pp. 367-373. http://geodesic.mathdoc.fr/item/TMF_1974_18_3_a7/

[1] Ya. A. Smorodinskii, L. A. Shelepin, UFN, 106:1 (1972), 1 | MR

[2] J. J. de Swart, Rev. Mod. Phys., 35 (1963), 916 ; UFN, 84 (1964), 651 | DOI | MR | DOI

[3] D. L. Pursey, Proc. Roy. Soc., 284 (1963), A275 | MR

[4] M. Moshinsky, Rev. Mod. Phys., 34 (1962), 813 | DOI | MR | Zbl

[5] K. T. Hecht, Nucl. Phys., 62 (1965), 1 | DOI | MR

[6] J. K. Kuriyan, D. Lurie, A. J. Macfarlane, J. Math. Phys., 6 (1965), 722 | DOI | MR | Zbl

[7] J. C. Carter, J. J. Coyne, J. Math. Phys., 10 (1969), 1204 | DOI | MR

[8] J. C. Carter, J. J. Coyne, S. Meshkov, Phys. Rev. Lett., 14 (1965), 523 | DOI | MR

[9] P. Mc. Namee, S. J. Chilton, F. Chilton, Rev. Mod. Phys., 36 (1964), 1005 | DOI | MR

[10] K. T. Hecht, Sing Chin Pang, J. Math. Phys., 10 (1969), 1571 | DOI | MR

[11] N. Ya. Vilenkin, G. I. Kuznetsov, Ya. A. Smorodinskii, YaF, 2 (1965), 906 | MR

[12] N. Ya. Vilenkin, Spetsialnye funktsii i teoriya predstavlenii grupp, «Nauka», 1965 | MR

[13] I. M. Gelfand, R. A. Minlos, Z. Ya. Shapiro, Predstavleniya gruppy vraschenii i gruppy Lorentsa, Fizmatgiz, 1958

[14] G. Beitmen, A. Erdeii, Tablitsy integralnykh preobrazovanii, tom 2, «Nauka», 1970