On~boson representation of angular momentum.~II
Teoretičeskaâ i matematičeskaâ fizika, Tome 18 (1974) no. 3, pp. 342-352
Voir la notice de l'article provenant de la source Math-Net.Ru
The states of a system of $N$ harmonic oscillators with fixed total number of quanta are decomposed with respect to bases of irreducible representations of $SU(2)$. The previously introduced basis [1] is a basis with the highest dimensionality in this decomposition. For the
case of three harmonic oscillators, the operators and a discrete basis of a representation
of the noncompact group $SU(1,1)$ are constructed. Bargmann's representation is considered
for these states.
@article{TMF_1974_18_3_a5,
author = {V. V. Mikhailov},
title = {On~boson representation of angular {momentum.~II}},
journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
pages = {342--352},
publisher = {mathdoc},
volume = {18},
number = {3},
year = {1974},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TMF_1974_18_3_a5/}
}
V. V. Mikhailov. On~boson representation of angular momentum.~II. Teoretičeskaâ i matematičeskaâ fizika, Tome 18 (1974) no. 3, pp. 342-352. http://geodesic.mathdoc.fr/item/TMF_1974_18_3_a5/