On~boson representation of angular momentum.~II
Teoretičeskaâ i matematičeskaâ fizika, Tome 18 (1974) no. 3, pp. 342-352

Voir la notice de l'article provenant de la source Math-Net.Ru

The states of a system of $N$ harmonic oscillators with fixed total number of quanta are decomposed with respect to bases of irreducible representations of $SU(2)$. The previously introduced basis [1] is a basis with the highest dimensionality in this decomposition. For the case of three harmonic oscillators, the operators and a discrete basis of a representation of the noncompact group $SU(1,1)$ are constructed. Bargmann's representation is considered for these states.
@article{TMF_1974_18_3_a5,
     author = {V. V. Mikhailov},
     title = {On~boson representation of angular {momentum.~II}},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {342--352},
     publisher = {mathdoc},
     volume = {18},
     number = {3},
     year = {1974},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_1974_18_3_a5/}
}
TY  - JOUR
AU  - V. V. Mikhailov
TI  - On~boson representation of angular momentum.~II
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 1974
SP  - 342
EP  - 352
VL  - 18
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TMF_1974_18_3_a5/
LA  - ru
ID  - TMF_1974_18_3_a5
ER  - 
%0 Journal Article
%A V. V. Mikhailov
%T On~boson representation of angular momentum.~II
%J Teoretičeskaâ i matematičeskaâ fizika
%D 1974
%P 342-352
%V 18
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TMF_1974_18_3_a5/
%G ru
%F TMF_1974_18_3_a5
V. V. Mikhailov. On~boson representation of angular momentum.~II. Teoretičeskaâ i matematičeskaâ fizika, Tome 18 (1974) no. 3, pp. 342-352. http://geodesic.mathdoc.fr/item/TMF_1974_18_3_a5/