Proof of the 3-irreducibility of the third Legendre transform
Teoretičeskaâ i matematičeskaâ fizika, Tome 18 (1974) no. 3, pp. 299-309
Cet article a éte moissonné depuis la source Math-Net.Ru
The iterative solution of the equations of motion [6] for the third Legendre transform is analyzed and it is shown that the graphs obtained in the process of iterating these equations are 3-irreducible. Knowledge of the symmetry coefficients of the graphs is not required for the proof.
@article{TMF_1974_18_3_a0,
author = {Yu. M. Pis'mak},
title = {Proof of the 3-irreducibility of the third {Legendre} transform},
journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
pages = {299--309},
year = {1974},
volume = {18},
number = {3},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TMF_1974_18_3_a0/}
}
Yu. M. Pis'mak. Proof of the 3-irreducibility of the third Legendre transform. Teoretičeskaâ i matematičeskaâ fizika, Tome 18 (1974) no. 3, pp. 299-309. http://geodesic.mathdoc.fr/item/TMF_1974_18_3_a0/
[1] C. De Domonisis, J. Math. Phys., 3 (1962), 983 | DOI
[2] C. De Domonisis, P. C. Martin, J. Math. Phys., 5, 14 ; (1964), 31 | DOI | DOI
[3] G. Jona-Lasinio, Nuovo Cim., 34 (1964), 1790 | DOI
[4] H. D. Damen, G. Jona-Lasinio, Nuovo Cim., 52A (1967), 807 | DOI
[5] A. N. Vasilev, A. K. Kazanskii, TMF, 12 (1972), 3
[6] A. N. Vasilev, A. K. Kazanskii, TMF, 14 (1973), 3 | MR
[7] R. P. Feynman, Rev. Mod. Phys., 20 (1947), 376 | MR