Proof of the 3-irreducibility of the third Legendre transform
Teoretičeskaâ i matematičeskaâ fizika, Tome 18 (1974) no. 3, pp. 299-309 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The iterative solution of the equations of motion [6] for the third Legendre transform is analyzed and it is shown that the graphs obtained in the process of iterating these equations are 3-irreducible. Knowledge of the symmetry coefficients of the graphs is not required for the proof.
@article{TMF_1974_18_3_a0,
     author = {Yu. M. Pis'mak},
     title = {Proof of the 3-irreducibility of the third {Legendre} transform},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {299--309},
     year = {1974},
     volume = {18},
     number = {3},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_1974_18_3_a0/}
}
TY  - JOUR
AU  - Yu. M. Pis'mak
TI  - Proof of the 3-irreducibility of the third Legendre transform
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 1974
SP  - 299
EP  - 309
VL  - 18
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/TMF_1974_18_3_a0/
LA  - ru
ID  - TMF_1974_18_3_a0
ER  - 
%0 Journal Article
%A Yu. M. Pis'mak
%T Proof of the 3-irreducibility of the third Legendre transform
%J Teoretičeskaâ i matematičeskaâ fizika
%D 1974
%P 299-309
%V 18
%N 3
%U http://geodesic.mathdoc.fr/item/TMF_1974_18_3_a0/
%G ru
%F TMF_1974_18_3_a0
Yu. M. Pis'mak. Proof of the 3-irreducibility of the third Legendre transform. Teoretičeskaâ i matematičeskaâ fizika, Tome 18 (1974) no. 3, pp. 299-309. http://geodesic.mathdoc.fr/item/TMF_1974_18_3_a0/

[1] C. De Domonisis, J. Math. Phys., 3 (1962), 983 | DOI

[2] C. De Domonisis, P. C. Martin, J. Math. Phys., 5, 14 ; (1964), 31 | DOI | DOI

[3] G. Jona-Lasinio, Nuovo Cim., 34 (1964), 1790 | DOI

[4] H. D. Damen, G. Jona-Lasinio, Nuovo Cim., 52A (1967), 807 | DOI

[5] A. N. Vasilev, A. K. Kazanskii, TMF, 12 (1972), 3

[6] A. N. Vasilev, A. K. Kazanskii, TMF, 14 (1973), 3 | MR

[7] R. P. Feynman, Rev. Mod. Phys., 20 (1947), 376 | MR