Spectral theory of Kirkwood–Salzburg equations in a finite volume
Teoretičeskaâ i matematičeskaâ fizika, Tome 18 (1974) no. 2, pp. 233-242
Cet article a éte moissonné depuis la source Math-Net.Ru
The system of Kirkwood–Salzburg equations are studied for continuous and lattice systems in a finite volume. It is shown that the operator defined by this system of equations has a spectrum, when appropriately understood, that coincides with the set of numbers $\{z_i^{-1}\}$, $i=1,2,\dots$, where $z_i$ are the zeros of the partition function of the physical system under conside ration.
@article{TMF_1974_18_2_a8,
author = {L. A. Pastur},
title = {Spectral theory of {Kirkwood{\textendash}Salzburg} equations in a~finite volume},
journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
pages = {233--242},
year = {1974},
volume = {18},
number = {2},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TMF_1974_18_2_a8/}
}
L. A. Pastur. Spectral theory of Kirkwood–Salzburg equations in a finite volume. Teoretičeskaâ i matematičeskaâ fizika, Tome 18 (1974) no. 2, pp. 233-242. http://geodesic.mathdoc.fr/item/TMF_1974_18_2_a8/