Spectral theory of Kirkwood--Salzburg equations in a~finite volume
Teoretičeskaâ i matematičeskaâ fizika, Tome 18 (1974) no. 2, pp. 233-242

Voir la notice de l'article provenant de la source Math-Net.Ru

The system of Kirkwood–Salzburg equations are studied for continuous and lattice systems in a finite volume. It is shown that the operator defined by this system of equations has a spectrum, when appropriately understood, that coincides with the set of numbers $\{z_i^{-1}\}$, $i=1,2,\dots$, where $z_i$ are the zeros of the partition function of the physical system under conside ration.
@article{TMF_1974_18_2_a8,
     author = {L. A. Pastur},
     title = {Spectral theory of {Kirkwood--Salzburg} equations in a~finite volume},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {233--242},
     publisher = {mathdoc},
     volume = {18},
     number = {2},
     year = {1974},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_1974_18_2_a8/}
}
TY  - JOUR
AU  - L. A. Pastur
TI  - Spectral theory of Kirkwood--Salzburg equations in a~finite volume
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 1974
SP  - 233
EP  - 242
VL  - 18
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TMF_1974_18_2_a8/
LA  - ru
ID  - TMF_1974_18_2_a8
ER  - 
%0 Journal Article
%A L. A. Pastur
%T Spectral theory of Kirkwood--Salzburg equations in a~finite volume
%J Teoretičeskaâ i matematičeskaâ fizika
%D 1974
%P 233-242
%V 18
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TMF_1974_18_2_a8/
%G ru
%F TMF_1974_18_2_a8
L. A. Pastur. Spectral theory of Kirkwood--Salzburg equations in a~finite volume. Teoretičeskaâ i matematičeskaâ fizika, Tome 18 (1974) no. 2, pp. 233-242. http://geodesic.mathdoc.fr/item/TMF_1974_18_2_a8/