Spectral theory of Kirkwood–Salzburg equations in a finite volume
Teoretičeskaâ i matematičeskaâ fizika, Tome 18 (1974) no. 2, pp. 233-242 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The system of Kirkwood–Salzburg equations are studied for continuous and lattice systems in a finite volume. It is shown that the operator defined by this system of equations has a spectrum, when appropriately understood, that coincides with the set of numbers $\{z_i^{-1}\}$, $i=1,2,\dots$, where $z_i$ are the zeros of the partition function of the physical system under conside ration.
@article{TMF_1974_18_2_a8,
     author = {L. A. Pastur},
     title = {Spectral theory of {Kirkwood{\textendash}Salzburg} equations in a~finite volume},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {233--242},
     year = {1974},
     volume = {18},
     number = {2},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_1974_18_2_a8/}
}
TY  - JOUR
AU  - L. A. Pastur
TI  - Spectral theory of Kirkwood–Salzburg equations in a finite volume
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 1974
SP  - 233
EP  - 242
VL  - 18
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/TMF_1974_18_2_a8/
LA  - ru
ID  - TMF_1974_18_2_a8
ER  - 
%0 Journal Article
%A L. A. Pastur
%T Spectral theory of Kirkwood–Salzburg equations in a finite volume
%J Teoretičeskaâ i matematičeskaâ fizika
%D 1974
%P 233-242
%V 18
%N 2
%U http://geodesic.mathdoc.fr/item/TMF_1974_18_2_a8/
%G ru
%F TMF_1974_18_2_a8
L. A. Pastur. Spectral theory of Kirkwood–Salzburg equations in a finite volume. Teoretičeskaâ i matematičeskaâ fizika, Tome 18 (1974) no. 2, pp. 233-242. http://geodesic.mathdoc.fr/item/TMF_1974_18_2_a8/

[1] N. N. Bogolyubov, B. I. Khatset, DAN SSSR, 66 (1949), 321 | MR | Zbl

[2] D. Ryuel, Statisticheskaya mekhanika (strogie rezultaty), «Mir», 1971

[3] T. Khill, Statisticheskaya mekhanika, IL, 1960

[4] I. M. Gelfand, G. E. Shilov, Obobschennye funktsii, vyp. 2, Fizmatgiz, 1958 | MR