Feynman quantization and the $S$-matrix for spin particles in Riemannian spacetime
Teoretičeskaâ i matematičeskaâ fizika, Tome 18 (1974) no. 2, pp. 190-202 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The Feynman space-time interpretation of quantum field theory is extended to the case of an arbitrary Riemanhian spacetime (external gravitational field). An expression In the form of a functional Integral for the causal propagator is derived by means of the proper time method and the appropriately generalized path Integral method. The Feynman diagrams are interpreted in terms of particles and antiparticles in such a way that the ordinary spacetime properties of the causal propagator hold (particles propagate forward and antiparticles backward in time). An expression is derived for the amplitude of pair creation in an external gravitational field, including effects of instability and vacuum degeneracy. It is shown that in the case of a closed three-space there is no Instability of the vacuum.
@article{TMF_1974_18_2_a4,
     author = {M. B. Menskii},
     title = {Feynman quantization and the $S$-matrix for spin particles in {Riemannian} spacetime},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {190--202},
     year = {1974},
     volume = {18},
     number = {2},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_1974_18_2_a4/}
}
TY  - JOUR
AU  - M. B. Menskii
TI  - Feynman quantization and the $S$-matrix for spin particles in Riemannian spacetime
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 1974
SP  - 190
EP  - 202
VL  - 18
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/TMF_1974_18_2_a4/
LA  - ru
ID  - TMF_1974_18_2_a4
ER  - 
%0 Journal Article
%A M. B. Menskii
%T Feynman quantization and the $S$-matrix for spin particles in Riemannian spacetime
%J Teoretičeskaâ i matematičeskaâ fizika
%D 1974
%P 190-202
%V 18
%N 2
%U http://geodesic.mathdoc.fr/item/TMF_1974_18_2_a4/
%G ru
%F TMF_1974_18_2_a4
M. B. Menskii. Feynman quantization and the $S$-matrix for spin particles in Riemannian spacetime. Teoretičeskaâ i matematičeskaâ fizika, Tome 18 (1974) no. 2, pp. 190-202. http://geodesic.mathdoc.fr/item/TMF_1974_18_2_a4/

[1] R. P. Feynman, Phys. Rev., 76 (1949), 769 | DOI | MR | Zbl

[2] M. B. Mensky, Quantum Field Theory in Riemannian Space-Time, preprint PIAN, No 140, 1971, p. 29

[3] M. B. Menskii, Problemy teorii gravitatsii i elementarnykh chastits, Tr. VNIIFTRI, no. 16 (46), 1972, 73

[4] L. Schulman, Phys. Rev., 176 (1968), 1558 | DOI | MR

[5] J. Schwinger, Phys. Rev., 82 (1951), 664 | DOI | MR | Zbl

[6] K. Nomidzu, Gruppy Li i differentsialnaya geometriya, IL, 1960 | MR

[7] M. B. Menskii, Gravitatsiya: problemy i perspektivy, «Naukova dumka», 1972, 157 | MR

[8] M. B. Menskii, Problemy teorii gravitatsii i elementarnykh chastits, Tr. VNIIFTRI, no. 16 (46), 1972, 115

[9] A. Lichnerowicz, Ann. Inst. H. Poincare, A1 (1964), 233 | MR

[10] A. A. Grib, S. G. Mamaev, YaF, 14 (1971), 800

[11] L. Parker, Phys. Rev., 183 (1969), 1057 ; Phys. Rev. D: Particles and Fields, 3 (1971), 346 | DOI | Zbl | DOI

[12] N. A. Chernikov, E. A. Tagirov, Ann. Inst. H. Poincare, 9 (1968), 109 | MR | Zbl