Method of summing the perturbation series in scalar theories
Teoretičeskaâ i matematičeskaâ fizika, Tome 18 (1974) no. 2, pp. 181-189

Voir la notice de l'article provenant de la source Math-Net.Ru

Taking as an example connected vacuum loops of the theory $-\lambda\varphi^4$, we consider a method of summing the perturbation series in which the number of graphs is allowed for exactly and the departure of the mean value of a graph from a purely power law is simulated by the substitution $\lambda\to\lambda e^{it}$ heit and subsequent averaging over $t$ with a weight $f(t)$ (the function $f$ remains unknown). The resulting expression is analytic in some sector, including the half-axis $\lambda>0$. At the point $\lambda=0$ there is an essential singularity generated by the concentric cuts that accumulate at the point $\lambda=0$ (the cuts are not included in the analyticity sector).
@article{TMF_1974_18_2_a3,
     author = {A. G. Basuev and A. N. Vasil'ev},
     title = {Method of summing the perturbation series in scalar theories},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {181--189},
     publisher = {mathdoc},
     volume = {18},
     number = {2},
     year = {1974},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_1974_18_2_a3/}
}
TY  - JOUR
AU  - A. G. Basuev
AU  - A. N. Vasil'ev
TI  - Method of summing the perturbation series in scalar theories
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 1974
SP  - 181
EP  - 189
VL  - 18
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TMF_1974_18_2_a3/
LA  - ru
ID  - TMF_1974_18_2_a3
ER  - 
%0 Journal Article
%A A. G. Basuev
%A A. N. Vasil'ev
%T Method of summing the perturbation series in scalar theories
%J Teoretičeskaâ i matematičeskaâ fizika
%D 1974
%P 181-189
%V 18
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TMF_1974_18_2_a3/
%G ru
%F TMF_1974_18_2_a3
A. G. Basuev; A. N. Vasil'ev. Method of summing the perturbation series in scalar theories. Teoretičeskaâ i matematičeskaâ fizika, Tome 18 (1974) no. 2, pp. 181-189. http://geodesic.mathdoc.fr/item/TMF_1974_18_2_a3/