Method of summing the perturbation series in scalar theories
Teoretičeskaâ i matematičeskaâ fizika, Tome 18 (1974) no. 2, pp. 181-189 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

Taking as an example connected vacuum loops of the theory $-\lambda\varphi^4$, we consider a method of summing the perturbation series in which the number of graphs is allowed for exactly and the departure of the mean value of a graph from a purely power law is simulated by the substitution $\lambda\to\lambda e^{it}$ heit and subsequent averaging over $t$ with a weight $f(t)$ (the function $f$ remains unknown). The resulting expression is analytic in some sector, including the half-axis $\lambda>0$. At the point $\lambda=0$ there is an essential singularity generated by the concentric cuts that accumulate at the point $\lambda=0$ (the cuts are not included in the analyticity sector).
@article{TMF_1974_18_2_a3,
     author = {A. G. Basuev and A. N. Vasil'ev},
     title = {Method of summing the perturbation series in scalar theories},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {181--189},
     year = {1974},
     volume = {18},
     number = {2},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_1974_18_2_a3/}
}
TY  - JOUR
AU  - A. G. Basuev
AU  - A. N. Vasil'ev
TI  - Method of summing the perturbation series in scalar theories
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 1974
SP  - 181
EP  - 189
VL  - 18
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/TMF_1974_18_2_a3/
LA  - ru
ID  - TMF_1974_18_2_a3
ER  - 
%0 Journal Article
%A A. G. Basuev
%A A. N. Vasil'ev
%T Method of summing the perturbation series in scalar theories
%J Teoretičeskaâ i matematičeskaâ fizika
%D 1974
%P 181-189
%V 18
%N 2
%U http://geodesic.mathdoc.fr/item/TMF_1974_18_2_a3/
%G ru
%F TMF_1974_18_2_a3
A. G. Basuev; A. N. Vasil'ev. Method of summing the perturbation series in scalar theories. Teoretičeskaâ i matematičeskaâ fizika, Tome 18 (1974) no. 2, pp. 181-189. http://geodesic.mathdoc.fr/item/TMF_1974_18_2_a3/

[1] C. Hurst, Proc. Roy. Soc., 214A (1952), 44 | DOI | MR | Zbl

[2] W. Thirring, Helv. Phys. Acta, 26 (1953), 33 | MR | Zbl

[3] A. Petermann, Helv. Phys. Acta, 26 (1953), 291 | MR | Zbl

[4] A. Jaffe, Commun. math. phys., 1 (1965), 127 | DOI | MR | Zbl

[5] J. Schwinger, Proc. Nat. Acad. Sci., 44 (1958), 956 | DOI | MR | Zbl

[6] D. Ruelle, Nuovo Cim., 19 (1961), 356 | DOI | MR | Zbl

[7] K. Symanzik, J. Math. Phys., 7 (1966), 510 | DOI | MR

[8] I. S. Gradshtein, I. M. Ryzhik, Tablitsy integralov, summ, ryadov i proizvedenii, «Nauka», 1971 | MR

[9] G. N. Vatson, Teoriya besselevykh funktsii, IL, 1949, str. 226

[10] E. Grei, G. B. Metyuz, Funktsii Besselya i ikh prilozheniya k fizike i mekhanike, IL, 1953, str. 80

[11] V. Vazov, Asimptoticheskie razlozheniya reshenii obyknovennykh differentsialnykh uravnenii, «Mir», 1968

[12] C. M. Bender, T. Wu, Phys. Rev., 184 (1969), 1231 | DOI | MR