Method of summing the perturbation series in scalar theories
Teoretičeskaâ i matematičeskaâ fizika, Tome 18 (1974) no. 2, pp. 181-189
Voir la notice de l'article provenant de la source Math-Net.Ru
Taking as an example connected vacuum loops of the theory $-\lambda\varphi^4$, we consider a method of summing the perturbation series in which the number of graphs is allowed for exactly and the departure of the mean value of a graph from a purely power law is simulated by the substitution
$\lambda\to\lambda e^{it}$ heit and subsequent averaging over $t$ with a weight $f(t)$ (the function $f$ remains unknown). The resulting expression is analytic in some sector, including the half-axis $\lambda>0$. At the point $\lambda=0$ there is an essential singularity generated by the concentric cuts that accumulate at the point $\lambda=0$ (the cuts are not included in the analyticity sector).
@article{TMF_1974_18_2_a3,
author = {A. G. Basuev and A. N. Vasil'ev},
title = {Method of summing the perturbation series in scalar theories},
journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
pages = {181--189},
publisher = {mathdoc},
volume = {18},
number = {2},
year = {1974},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TMF_1974_18_2_a3/}
}
TY - JOUR AU - A. G. Basuev AU - A. N. Vasil'ev TI - Method of summing the perturbation series in scalar theories JO - Teoretičeskaâ i matematičeskaâ fizika PY - 1974 SP - 181 EP - 189 VL - 18 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/TMF_1974_18_2_a3/ LA - ru ID - TMF_1974_18_2_a3 ER -
A. G. Basuev; A. N. Vasil'ev. Method of summing the perturbation series in scalar theories. Teoretičeskaâ i matematičeskaâ fizika, Tome 18 (1974) no. 2, pp. 181-189. http://geodesic.mathdoc.fr/item/TMF_1974_18_2_a3/