On the removal of cutoffs in the $S$-matrix
Teoretičeskaâ i matematičeskaâ fizika, Tome 18 (1974) no. 2, pp. 161-173
Cet article a éte moissonné depuis la source Math-Net.Ru
Bogolyubov's $R$-operation is studied for $H_{\operatorname{int}}=\lambda:\varphi^4(x):$, where $\varphi(x)$ is a generalized free field with space-like regularization. It is shown that the coefficient functions of the perturbation series for the $S$-matrix tend to their renormalized values when the cutoffs are removed.
@article{TMF_1974_18_2_a1,
author = {V. A. Shcherbina},
title = {On the removal of cutoffs in the $S$-matrix},
journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
pages = {161--173},
year = {1974},
volume = {18},
number = {2},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TMF_1974_18_2_a1/}
}
V. A. Shcherbina. On the removal of cutoffs in the $S$-matrix. Teoretičeskaâ i matematičeskaâ fizika, Tome 18 (1974) no. 2, pp. 161-173. http://geodesic.mathdoc.fr/item/TMF_1974_18_2_a1/
[1] I. Segal, Ann. Math., 92 (1970), 462 | DOI | MR | Zbl
[2] B. Simon, R. Hoegh-Krohn, J. Funct. Anal., 9 (1972), 121 | DOI | MR | Zbl
[3] J. Glimm, A. Jaffe, J. Math. Phys., 13 (1972), 10 | DOI | MR
[4] N. S. Gonchar, Preprint, ITP-72-64E, 1972
[5] K. Symanzik, Rend. Scuola Int. Fis., E. Fermi, XLV Corso, 1970 | Zbl
[6] J. Glimm, T. Spencer, Preprint, N.Y.U., 1972
[7] E. Nelson, J. Funct. Anal. (to appear)
[8] I. Segal, Funct. Anal., 6 (1970), 29 | DOI | Zbl
[9] S. Albeverio, R. Hoegh-Krohn, Preprint, J.M.V.O., 1972 | MR
[10] E. Nelson, J. Funct. Anal., 12 (1973), 97 | DOI | MR | Zbl
[11] E. Nelson, Proc. 1971 AMS, Providence, 1973
[12] J. Glimm, A. Jaffe, Anal. Math., 91 (1972)
[13] L. Gross, J. Funct. Anal., 10 (1972), 52 | DOI | MR | Zbl