On the removal of cutoffs in the $S$-matrix
Teoretičeskaâ i matematičeskaâ fizika, Tome 18 (1974) no. 2, pp. 161-173
Voir la notice de l'article provenant de la source Math-Net.Ru
Bogolyubov's $R$-operation is studied for $H_{\operatorname{int}}=\lambda:\varphi^4(x):$, where $\varphi(x)$ is a generalized free field with space-like regularization. It is shown that the coefficient functions of the perturbation series for the $S$-matrix tend to their renormalized values when the cutoffs are removed.
@article{TMF_1974_18_2_a1,
author = {V. A. Shcherbina},
title = {On the removal of cutoffs in the $S$-matrix},
journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
pages = {161--173},
publisher = {mathdoc},
volume = {18},
number = {2},
year = {1974},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TMF_1974_18_2_a1/}
}
V. A. Shcherbina. On the removal of cutoffs in the $S$-matrix. Teoretičeskaâ i matematičeskaâ fizika, Tome 18 (1974) no. 2, pp. 161-173. http://geodesic.mathdoc.fr/item/TMF_1974_18_2_a1/