Example of a one-time many-particle relativistic wave equation
Teoretičeskaâ i matematičeskaâ fizika, Tome 18 (1974) no. 1, pp. 56-65 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

An example is given of a relativistic wave equation of a system of $N$ particles with interaction potential containing only $N$-particle forces. The equation is formulated in the variables $t$, $g_1$, $g_2,\dots$, where $g_i$ are the three-dimensional parts of the four-velocities, and the equation is a direct generalization of the Sehrödinger equation in the $p$-representation. The transformations of the wave function allowed by the equation form a group that is isomorphic to the Poincare group and, when the interaction is switched off, they form a group that is isomorphic to the direct product of Poincare groups. An analog of the configuration $x$-space is constructed and it is shown that the equation is consistent with classical relativistic mechanics of many bodies.
@article{TMF_1974_18_1_a5,
     author = {S. N. Sokolov},
     title = {Example of a~one-time many-particle relativistic wave equation},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {56--65},
     year = {1974},
     volume = {18},
     number = {1},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_1974_18_1_a5/}
}
TY  - JOUR
AU  - S. N. Sokolov
TI  - Example of a one-time many-particle relativistic wave equation
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 1974
SP  - 56
EP  - 65
VL  - 18
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/TMF_1974_18_1_a5/
LA  - ru
ID  - TMF_1974_18_1_a5
ER  - 
%0 Journal Article
%A S. N. Sokolov
%T Example of a one-time many-particle relativistic wave equation
%J Teoretičeskaâ i matematičeskaâ fizika
%D 1974
%P 56-65
%V 18
%N 1
%U http://geodesic.mathdoc.fr/item/TMF_1974_18_1_a5/
%G ru
%F TMF_1974_18_1_a5
S. N. Sokolov. Example of a one-time many-particle relativistic wave equation. Teoretičeskaâ i matematičeskaâ fizika, Tome 18 (1974) no. 1, pp. 56-65. http://geodesic.mathdoc.fr/item/TMF_1974_18_1_a5/

[1] Yu. M. Shirokov, ZhETF, 33 (1957), 861 ; 33 (1957), 1196 ; ЭЧАЯ, 3 (1972), 606 | Zbl

[2] A. A. Logunov, A. N. Tavkhelidze, Nuovo Cim., 29 (1963), 380 | DOI | MR

[3] R. N. Faustov, EChAYa, 3 (1972), 239 | MR

[4] V. M. Vinogradov, TMF, 8 (1971), 343 ; 10 (1972), 338 ; 12 (1972), 29

[5] A. N. Kvinikhidze, D. Ts. Stoyanov, TMF, 11 (1972), 23

[6] L. L. Foldy, Phys. Rev., 112 (1961), 275 | DOI

[7] B. Bakamjian, L. H. Thomas, Phys. Rev., 92 (1953), 1300 | DOI | MR | Zbl

[8] L. L. Foldy, Phys. Rev., 102 (1956), 568 | DOI | MR | Zbl

[9] H. Osborn, Phys. Rev., 176 (1968), 1514 | DOI

[10] Yu. A. Golfand, DAN SSSR, 138 (1961), 331 | MR

[11] R. Nyuton, Teoriya rasseyaniya voln i chastits, gl. 6, «Mir», 1969 | MR

[12] V. Bargmann, Rev. Mod. Phys., 29 (1957), 161 | DOI | MR

[13] D. G. Currie, T. F. Jordan, E. C. G. Sudarshan, Rev. Mod. Phys., 35 (1963), 350 | DOI | MR

[14] S. N. Sokolov, TMF, 7 (1971), 217

[15] V. Bargmann, Ann. Math., 59 (1954), 1 | DOI | MR | Zbl

[16] S. N. Sokolov, Preprint IFVE STF 71-90, Serpukhov, 1971 | MR