Example of a~one-time many-particle relativistic wave equation
Teoretičeskaâ i matematičeskaâ fizika, Tome 18 (1974) no. 1, pp. 56-65

Voir la notice de l'article provenant de la source Math-Net.Ru

An example is given of a relativistic wave equation of a system of $N$ particles with interaction potential containing only $N$-particle forces. The equation is formulated in the variables $t$, $g_1$, $g_2,\dots$, where $g_i$ are the three-dimensional parts of the four-velocities, and the equation is a direct generalization of the Sehrödinger equation in the $p$-representation. The transformations of the wave function allowed by the equation form a group that is isomorphic to the Poincare group and, when the interaction is switched off, they form a group that is isomorphic to the direct product of Poincare groups. An analog of the configuration $x$-space is constructed and it is shown that the equation is consistent with classical relativistic mechanics of many bodies.
@article{TMF_1974_18_1_a5,
     author = {S. N. Sokolov},
     title = {Example of a~one-time many-particle relativistic wave equation},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {56--65},
     publisher = {mathdoc},
     volume = {18},
     number = {1},
     year = {1974},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_1974_18_1_a5/}
}
TY  - JOUR
AU  - S. N. Sokolov
TI  - Example of a~one-time many-particle relativistic wave equation
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 1974
SP  - 56
EP  - 65
VL  - 18
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TMF_1974_18_1_a5/
LA  - ru
ID  - TMF_1974_18_1_a5
ER  - 
%0 Journal Article
%A S. N. Sokolov
%T Example of a~one-time many-particle relativistic wave equation
%J Teoretičeskaâ i matematičeskaâ fizika
%D 1974
%P 56-65
%V 18
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TMF_1974_18_1_a5/
%G ru
%F TMF_1974_18_1_a5
S. N. Sokolov. Example of a~one-time many-particle relativistic wave equation. Teoretičeskaâ i matematičeskaâ fizika, Tome 18 (1974) no. 1, pp. 56-65. http://geodesic.mathdoc.fr/item/TMF_1974_18_1_a5/