On the description of quasiparticles by Green's functions
Teoretičeskaâ i matematičeskaâ fizika, Tome 17 (1973) no. 3, pp. 422-428 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

A description of statistical systems based on one-particle Green's functions is proposed. A propagator formalism is constructed without the use of field operators on the basis of some axioms for the Green's functions. These axioms are used to derive a Principle of minimality for the mean energy. The mass operator, which takes into account all manyparticle interactions, is given by a closed system of equations, in which the effective unrenormalized interaction plays a fundamental role. The unrenormalized interaction is determined either experimentally or from the variational principle.
@article{TMF_1973_17_3_a9,
     author = {V. I. Yukalov},
     title = {On the description of quasiparticles by {Green's} functions},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {422--428},
     year = {1973},
     volume = {17},
     number = {3},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_1973_17_3_a9/}
}
TY  - JOUR
AU  - V. I. Yukalov
TI  - On the description of quasiparticles by Green's functions
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 1973
SP  - 422
EP  - 428
VL  - 17
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/TMF_1973_17_3_a9/
LA  - ru
ID  - TMF_1973_17_3_a9
ER  - 
%0 Journal Article
%A V. I. Yukalov
%T On the description of quasiparticles by Green's functions
%J Teoretičeskaâ i matematičeskaâ fizika
%D 1973
%P 422-428
%V 17
%N 3
%U http://geodesic.mathdoc.fr/item/TMF_1973_17_3_a9/
%G ru
%F TMF_1973_17_3_a9
V. I. Yukalov. On the description of quasiparticles by Green's functions. Teoretičeskaâ i matematičeskaâ fizika, Tome 17 (1973) no. 3, pp. 422-428. http://geodesic.mathdoc.fr/item/TMF_1973_17_3_a9/

[1] D. N. Zubarev, UFN, 71 (1960), 71 | DOI | MR

[2] V. L. Bonch-Bruevich, S. V. Tyablikov, Metod funktsii Grina v statisticheskoi mekhanike, Fizmatgiz, 1961 | MR

[3] A. A. Abrikosov, L. P. Gorkov, I. E. Dzyaloshinskii, Metody kvantovoi teorii polya v statisticheskoi fizike, Fizmatgiz, 1962 | MR | Zbl

[4] P. Martin, Yu. Shvinger, Teoriya sistem mnogikh chastits, IL, 1962

[5] L. Kadanov, G. Beim, Kvantovaya statisticheskaya mekhanika, «Mir», 1964

[6] C. Bloch, C. D. Dominicis, Nucl. Phys., 7 (1958), 459 | DOI | Zbl

[7] A. Salam, UFN, 99 (1969), 571 | DOI

[8] L. D. Landau, Sobranie trudov, «Nauka», 1969 | MR

[9] D. Pains, F. Nozer, Teoriya kvantovykh zhidkostei, «Mir», 1967

[10] L. Hedin, S. Lundqvist, Sol. Stat. Phys., 23 (1969), 1 | DOI

[11] V. P. Silin, FMM, 29 (1970), 681

[12] A. B. Migdal, Metod kvazichastits v teorii yadra, «Nauka», 1967

[13] G. M. Vagradov, B. N. Kalinkin, TMF, 9 (1971), 240

[14] N. R. Werthämer, Amer. J. Phys., 37 (1969), 763 | DOI

[15] R. A. Guyer, Sol. Stat. Phys., 23 (1969), 413 | DOI

[16] S. V. Tyablikov, ZhETF, 18 (1948), 368 | MR

[17] Yu. Shvinger, Chastitsy, istochniki, polya, «Mir», 1973

[18] S. T. Belyaev, ZhETF, 34 (1958), 417 | Zbl

[19] H. Lehmann, Nuovo Cum., 11 (1954), 342 | DOI | MR | Zbl

[20] E. Meison, T. Sperling, Virialnoe uravnenie sostoyaniya, «Mir», 1972