Optimal quantum measurements
Teoretičeskaâ i matematičeskaâ fizika, Tome 17 (1973) no. 3, pp. 319-326
Cet article a éte moissonné depuis la source Math-Net.Ru
An optimal compatible measurement, in the sense of the mean-square error, of canonical variables $p$ and $q$ is found. It is shown that this measurement is described by an operator-valued measure defined by a family of coherent states. Problems of optimal measurements of the parameters of quasifree states are also considered.
@article{TMF_1973_17_3_a1,
author = {A. S. Holevo},
title = {Optimal quantum measurements},
journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
pages = {319--326},
year = {1973},
volume = {17},
number = {3},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TMF_1973_17_3_a1/}
}
A. S. Holevo. Optimal quantum measurements. Teoretičeskaâ i matematičeskaâ fizika, Tome 17 (1973) no. 3, pp. 319-326. http://geodesic.mathdoc.fr/item/TMF_1973_17_3_a1/
[1] Dzh. fon Neiman, Matematicheskie osnovy kvantovoi mekhaniki, «Nauka», 1964 | MR
[2] A. S. Holevo, Proc. 2nd Japan-USSR symposium on probability theory, vol. 1, 1972, 22 | MR
[3] C. W. Helstrom, J. W. S. Liu, J. P. Gordon, Proc. IEEE, 58 (1970), 1978 | DOI | MR
[4] C. W. Helstrom, J. Statist. Physics, 1 (1969), 231 | DOI | MR
[5] G. Loupias, S. Miracle-Sole, Commun. Math. Phys., 2 (1966), 31 | DOI | MR | Zbl
[6] J. C. T. Pool, J. Math. Phys., 7 (1966), 66 | DOI | MR | Zbl
[7] A. S. Kholevo, Probl. peredachi inf., 6:4 (1970), 42 | MR
[8] I. Sigal, Matematicheskie problemy relyativistskoi fiziki, «Mir», 1968 | MR
[9] R. J. Glauber, Phys. Rev., 131 (1963), 2766 | DOI | MR
[10] R. V. Kadison, Ann. Math., 56 (1952), 494 | DOI | MR | Zbl