Some remarks on the wigner distribution
Teoretičeskaâ i matematičeskaâ fizika, Tome 17 (1973) no. 3, pp. 305-318

Voir la notice de l'article provenant de la source Math-Net.Ru

For a generalized Wigner ensemble of random $N$-th order matrices $A_N(\omega)$ the formula $$ \lim_{N\to\infty}\frac1N\ln\int\det A_N(\omega)d\omega= \lim_{N\to\infty}\int\ln\det A_N(\omega)d\omega. $$ is obtained. This formula implies that $[\det A_N(\omega)]^{1/N}$ is strongly selfaveraging. In addition, it enables one to apply an integral with respect to anticommuting variables to the calculation of the limiting distribution. It can be shown that for this integral the Hartree–Fokapproximationgives the exact answer in the limit $N\to\infty$.
@article{TMF_1973_17_3_a0,
     author = {F. A. Berezin},
     title = {Some remarks on the wigner distribution},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {305--318},
     publisher = {mathdoc},
     volume = {17},
     number = {3},
     year = {1973},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_1973_17_3_a0/}
}
TY  - JOUR
AU  - F. A. Berezin
TI  - Some remarks on the wigner distribution
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 1973
SP  - 305
EP  - 318
VL  - 17
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TMF_1973_17_3_a0/
LA  - ru
ID  - TMF_1973_17_3_a0
ER  - 
%0 Journal Article
%A F. A. Berezin
%T Some remarks on the wigner distribution
%J Teoretičeskaâ i matematičeskaâ fizika
%D 1973
%P 305-318
%V 17
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TMF_1973_17_3_a0/
%G ru
%F TMF_1973_17_3_a0
F. A. Berezin. Some remarks on the wigner distribution. Teoretičeskaâ i matematičeskaâ fizika, Tome 17 (1973) no. 3, pp. 305-318. http://geodesic.mathdoc.fr/item/TMF_1973_17_3_a0/