Symmetry of a phenomenological Lagrangian and Adler's principle
Teoretičeskaâ i matematičeskaâ fizika, Tome 17 (1973) no. 2, pp. 210-220

Voir la notice de l'article provenant de la source Math-Net.Ru

A method is proposed for obtaining soft-pion theorems by means of a phenomenological Lagrangian that is symmetric under group $G$. It is assumed that the Lagrangian contains an arbitrary power of the particle momenta. The resulting relations go over into Adler's selfconsistency conditions if one allows only the lowest powers of the field derivatives in the Lagrangian. It is shown that the requirement of symmetry of the Lagrangian is equi- valent to Adler's principle.
@article{TMF_1973_17_2_a8,
     author = {A. I. Pashnev},
     title = {Symmetry of a phenomenological {Lagrangian} and {Adler's} principle},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {210--220},
     publisher = {mathdoc},
     volume = {17},
     number = {2},
     year = {1973},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_1973_17_2_a8/}
}
TY  - JOUR
AU  - A. I. Pashnev
TI  - Symmetry of a phenomenological Lagrangian and Adler's principle
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 1973
SP  - 210
EP  - 220
VL  - 17
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TMF_1973_17_2_a8/
LA  - ru
ID  - TMF_1973_17_2_a8
ER  - 
%0 Journal Article
%A A. I. Pashnev
%T Symmetry of a phenomenological Lagrangian and Adler's principle
%J Teoretičeskaâ i matematičeskaâ fizika
%D 1973
%P 210-220
%V 17
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TMF_1973_17_2_a8/
%G ru
%F TMF_1973_17_2_a8
A. I. Pashnev. Symmetry of a phenomenological Lagrangian and Adler's principle. Teoretičeskaâ i matematičeskaâ fizika, Tome 17 (1973) no. 2, pp. 210-220. http://geodesic.mathdoc.fr/item/TMF_1973_17_2_a8/