Symmetry of a phenomenological Lagrangian and Adler's principle
    
    
  
  
  
      
      
      
        
Teoretičeskaâ i matematičeskaâ fizika, Tome 17 (1973) no. 2, pp. 210-220
    
  
  
  
  
  
    
      
      
        
      
      
      
    Voir la notice de l'article provenant de la source Math-Net.Ru
            
              			A method is proposed for obtaining soft-pion theorems by means of a phenomenological
Lagrangian that is symmetric under group $G$. It is assumed that the Lagrangian contains
an arbitrary power of the particle momenta. The resulting relations go over into Adler's
selfconsistency conditions if one allows only the lowest powers of the field derivatives in
the Lagrangian. It is shown that the requirement of symmetry of the Lagrangian is equi-
valent to Adler's principle.
			
            
            
            
          
        
      @article{TMF_1973_17_2_a8,
     author = {A. I. Pashnev},
     title = {Symmetry of a phenomenological {Lagrangian} and {Adler's} principle},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {210--220},
     publisher = {mathdoc},
     volume = {17},
     number = {2},
     year = {1973},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_1973_17_2_a8/}
}
                      
                      
                    A. I. Pashnev. Symmetry of a phenomenological Lagrangian and Adler's principle. Teoretičeskaâ i matematičeskaâ fizika, Tome 17 (1973) no. 2, pp. 210-220. http://geodesic.mathdoc.fr/item/TMF_1973_17_2_a8/
