Sufficient conditions of covariance of represen'tations of $C^*$-algebras. II
Teoretičeskaâ i matematičeskaâ fizika, Tome 17 (1973) no. 2, pp. 165-168
Cet article a éte moissonné depuis la source Math-Net.Ru
Some conditions of $G$ eovariance of quasicovariant representations $\pi$ are considered for separable topological groups $G$. Such conditions are countable decomposability and a properly infinite commutator algebra of $\pi$.
@article{TMF_1973_17_2_a2,
author = {A. V. Bulinsky},
title = {Sufficient conditions of covariance of represen'tations of $C^*${-algebras.~II}},
journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
pages = {165--168},
year = {1973},
volume = {17},
number = {2},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TMF_1973_17_2_a2/}
}
A. V. Bulinsky. Sufficient conditions of covariance of represen'tations of $C^*$-algebras. II. Teoretičeskaâ i matematičeskaâ fizika, Tome 17 (1973) no. 2, pp. 165-168. http://geodesic.mathdoc.fr/item/TMF_1973_17_2_a2/
[1] A. V. Bulinskii, TMF, 17:1 (1973) | MR
[2] A. V. Bulinskii, Tezisy VIII Vsesoyuznoi konferentsii po teorii elementarnykh chastits (Uzhgorod, yanvar 1971)
[3] R. Kallman, Trans. Amer. Math. Soc., 156 (1971), 505 | DOI | MR | Zbl
[4] R. Kadison, Topology, Suppl. 2, 3 (1965), 177 | DOI | MR | Zbl
[5] M. Henle, Commun. Math. Phys., 19 (1970), 273 | DOI | MR | Zbl
[6] H. Halpern, Commun. Math. Phys., 25 (1972), 253 | DOI | MR | Zbl
[7] J. Dixmier, Les algèbres d'opérateurs dans l'espace hilbertienne, Paris, 1957 | MR
[8] H. Borchers, Commun. Math. Phys., 14 (1969), 305 | DOI | MR | Zbl
[9] G. Mackey, J. Math. Pures Appl., 36 (1957), 171 ; Acta Math., 99 (1958), 265 | MR | Zbl | DOI | MR | Zbl
[10] H. Araki, Publ. RIMS-120, 1972 | MR