Collison integral in a homogeneous plasma in a magnetic field
Teoretičeskaâ i matematičeskaâ fizika, Tome 17 (1973) no. 2, pp. 283-292
Cet article a éte moissonné depuis la source Math-Net.Ru
Bogolyubov's method is used to obtain the collision integral for the particles of a homogeneous plasma interacting through the Coulomb law in a static magnetic field. Allowance is made for the effect of the magnetic field on binary collisions and also the scattering of particles on fluctuation oscillations of the plasma in the magnetic field for the general case of a nonstationary distribution function. In this case, the particle distribution function depends not only on the components of the momentum parallel to and at right angles to the magnetic field but also on the azimuthal angle in the momentum space (with $Z$ axis parallel to the magnetic field).
@article{TMF_1973_17_2_a15,
author = {V. I. Lapshin and K. N. Stepanov},
title = {Collison integral in a homogeneous plasma in a magnetic field},
journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
pages = {283--292},
year = {1973},
volume = {17},
number = {2},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TMF_1973_17_2_a15/}
}
V. I. Lapshin; K. N. Stepanov. Collison integral in a homogeneous plasma in a magnetic field. Teoretičeskaâ i matematičeskaâ fizika, Tome 17 (1973) no. 2, pp. 283-292. http://geodesic.mathdoc.fr/item/TMF_1973_17_2_a15/
[1] N. N. Bogolyubov, Problemy dinamicheskoi teorii v statisticheskoi fizike, Gostekhizdat, 1946 | MR
[2] R. Balesku, Phys. Fluids, 3 (1960), 52 | DOI | MR
[3] A. Lenard, Ann. Phys., 10 (1960), 90 | DOI | MR
[4] O. V. Konstantinov, V. I. Perel, ZhETF, 39 (1960), 861 | MR
[5] V. P. Silin, ZhETF, 40 (1961), 1768 | MR | Zbl
[6] S. T. Belyaev, Fizika plazmy i problemy upravlyaemykh termoyadernykh reaktsii, t. 3, Izd-vo AN USSR, 66
[7] V. P. Silin, ZhETF, 43 (1962), 1813
[8] N. Rostoker, Phys. Fluids, 3 (1960), 922 | DOI | MR | Zbl
[9] V. P. Silin, Vvedenie v kineticheskuyu teoriyu gazov, «Nauka», 1971