Collison integral in a homogeneous plasma in a magnetic field
Teoretičeskaâ i matematičeskaâ fizika, Tome 17 (1973) no. 2, pp. 283-292
Voir la notice de l'article provenant de la source Math-Net.Ru
Bogolyubov's method is used to obtain the collision integral for the particles of a homogeneous plasma interacting through the Coulomb law in a static magnetic field. Allowance
is made for the effect of the magnetic field on binary collisions and also the scattering of
particles on fluctuation oscillations of the plasma in the magnetic field for the general case
of a nonstationary distribution function. In this case, the particle distribution function depends not only on the components of the momentum parallel to and at right angles to the
magnetic field but also on the azimuthal angle in the momentum space (with $Z$ axis parallel
to the magnetic field).
@article{TMF_1973_17_2_a15,
author = {V. I. Lapshin and K. N. Stepanov},
title = {Collison integral in a homogeneous plasma in a magnetic field},
journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
pages = {283--292},
publisher = {mathdoc},
volume = {17},
number = {2},
year = {1973},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TMF_1973_17_2_a15/}
}
TY - JOUR AU - V. I. Lapshin AU - K. N. Stepanov TI - Collison integral in a homogeneous plasma in a magnetic field JO - Teoretičeskaâ i matematičeskaâ fizika PY - 1973 SP - 283 EP - 292 VL - 17 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/TMF_1973_17_2_a15/ LA - ru ID - TMF_1973_17_2_a15 ER -
V. I. Lapshin; K. N. Stepanov. Collison integral in a homogeneous plasma in a magnetic field. Teoretičeskaâ i matematičeskaâ fizika, Tome 17 (1973) no. 2, pp. 283-292. http://geodesic.mathdoc.fr/item/TMF_1973_17_2_a15/