Stochastic space and nonlocal fields
Teoretičeskaâ i matematičeskaâ fizika, Tome 17 (1973) no. 2, pp. 153-159
Cet article a éte moissonné depuis la source Math-Net.Ru
A variant of a stochastic space is considered that has the property that a field when averaged in this space is a nonlocal field leading to anSmatrix satisfying macroscopic causality and unitarity.
@article{TMF_1973_17_2_a0,
author = {D. I. Blokhintsev},
title = {Stochastic space and nonlocal fields},
journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
pages = {153--159},
year = {1973},
volume = {17},
number = {2},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TMF_1973_17_2_a0/}
}
D. I. Blokhintsev. Stochastic space and nonlocal fields. Teoretičeskaâ i matematičeskaâ fizika, Tome 17 (1973) no. 2, pp. 153-159. http://geodesic.mathdoc.fr/item/TMF_1973_17_2_a0/
[1] M. A. Markov, Preprint E-2014, OIYaI, 1966; Препринт E2-5271, ОИЯИ, 1970
[2] D. I. Blokhintsev, UFN (to appear); Препринт E2-6653, ОИЯИ, 1972
[3] D. I. Blokhintsev, TMF, 11 (1972), 3 ; Препринт E2-6566, ОИЯИ, 1972; Пространство и время в микромире, «Наука», 1970 | Zbl
[4] H. Rund, The differential geometry of Finsler Space, Springer, 1959 | MR | Zbl
[5] H. Snyder, Phys. Rev., 71 (1947), 38 | DOI | MR | Zbl
[6] G. V. Efimov, Commun. Math. Phys., 5 (1967), 42 | DOI | MR | Zbl
[7] G. V. Efimov, Commun. Math. Phys., 7 (1968), 138 | DOI | MR | Zbl
[8] V. A. Alebastrov, G. V. Efimov, Preprint P2-6586, OIYaI, 1972 | MR