Finite-dimensional distribution functions in the statistical theory of turbulence
Teoretičeskaâ i matematičeskaâ fizika, Tome 17 (1973) no. 1, pp. 131-141

Voir la notice de l'article provenant de la source Math-Net.Ru

Closed equations are obtained for the probability densities for the values of the turbulent velocity of an incompressible liquid at one and two points. The methods of nonequilibrium statistical mechanics [1] and quantum field theory [2] are used in the derivation. It is shown that the point of departure in the formalism is an equation of Liouville type with an interaction constant of order unity for all Reynolds numbers. The motives behind the approach to the turbulence problem based on the formalism of finite-dimensional distribution functions are discussed.
@article{TMF_1973_17_1_a11,
     author = {T. L. Perel'man and V. A. Sosinovich},
     title = {Finite-dimensional distribution functions in the statistical theory of turbulence},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {131--141},
     publisher = {mathdoc},
     volume = {17},
     number = {1},
     year = {1973},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_1973_17_1_a11/}
}
TY  - JOUR
AU  - T. L. Perel'man
AU  - V. A. Sosinovich
TI  - Finite-dimensional distribution functions in the statistical theory of turbulence
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 1973
SP  - 131
EP  - 141
VL  - 17
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TMF_1973_17_1_a11/
LA  - ru
ID  - TMF_1973_17_1_a11
ER  - 
%0 Journal Article
%A T. L. Perel'man
%A V. A. Sosinovich
%T Finite-dimensional distribution functions in the statistical theory of turbulence
%J Teoretičeskaâ i matematičeskaâ fizika
%D 1973
%P 131-141
%V 17
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TMF_1973_17_1_a11/
%G ru
%F TMF_1973_17_1_a11
T. L. Perel'man; V. A. Sosinovich. Finite-dimensional distribution functions in the statistical theory of turbulence. Teoretičeskaâ i matematičeskaâ fizika, Tome 17 (1973) no. 1, pp. 131-141. http://geodesic.mathdoc.fr/item/TMF_1973_17_1_a11/