Sufficient conditions of covariance of representations of $C^*$-algebras. I
Teoretičeskaâ i matematičeskaâ fizika, Tome 17 (1973) no. 1, pp. 19-23
For a compact group $G$ of automorphisms conditions are considered which ensure that a representation $\pi$ of a $C^*$-algebra $\mathscr A$ is unitarily equivalent to a $G$-covariant representation $\rho$ of that algebra.
@article{TMF_1973_17_1_a1,
author = {A. V. Bulinsky},
title = {Sufficient conditions of covariance of representations of $C^*${-algebras.~I}},
journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
pages = {19--23},
year = {1973},
volume = {17},
number = {1},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TMF_1973_17_1_a1/}
}
A. V. Bulinsky. Sufficient conditions of covariance of representations of $C^*$-algebras. I. Teoretičeskaâ i matematičeskaâ fizika, Tome 17 (1973) no. 1, pp. 19-23. http://geodesic.mathdoc.fr/item/TMF_1973_17_1_a1/
[1] J. Dixmier, Les $C^*$ algebres et leurs representations, Paris, 1969 | MR
[2] J. Dixmier, Les algebres d'operateurs dans l'espace hilbertienne, Paris, 1957 | MR
[3] H. J. Borchers, Commun. Math. Phys., 14 (1969), 305 | DOI | MR | Zbl
[4] A. V. Bulinskii, Tezisy VIII Vsesoyuznoi konferentsii po teorii elementarnykh chastits, Uzhgorod, 1971 | Zbl
[5] A. V. Bulinskii, TMF, 13 (1972), 62 | MR | Zbl
[6] S. Doplicher, D. Kastler, D. Robinson, Commun. Math. Phys., 3 (1966), 1 | DOI | MR | Zbl
[7] J. Aarnes, J. Funct. Analysis, 5 (1970), 201 | DOI | MR
[8] R. Moore, Memoir Amer. Math. Soc., 78, 1968 | MR | Zbl
[9] M. Takesaki, Lecture Notes in Math., 128, 1970 | DOI | MR | Zbl