Representations of canonical commutation relations in the limit of an infinite volume
Teoretičeskaâ i matematičeskaâ fizika, Tome 17 (1973) no. 1, pp. 3-18
Cet article a éte moissonné depuis la source Math-Net.Ru
A representation of the Weyl group is constructed in the renormalized space [6] for the Yukawa model in the limit of an infinite volume. It is shown that the resulting non-Fok representation is a locally Fok representation.
@article{TMF_1973_17_1_a0,
author = {I. Ya. Aref'eva and P. P. Kulish},
title = {Representations of canonical commutation relations in the limit of an infinite volume},
journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
pages = {3--18},
year = {1973},
volume = {17},
number = {1},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TMF_1973_17_1_a0/}
}
TY - JOUR AU - I. Ya. Aref'eva AU - P. P. Kulish TI - Representations of canonical commutation relations in the limit of an infinite volume JO - Teoretičeskaâ i matematičeskaâ fizika PY - 1973 SP - 3 EP - 18 VL - 17 IS - 1 UR - http://geodesic.mathdoc.fr/item/TMF_1973_17_1_a0/ LA - ru ID - TMF_1973_17_1_a0 ER -
I. Ya. Aref'eva; P. P. Kulish. Representations of canonical commutation relations in the limit of an infinite volume. Teoretičeskaâ i matematičeskaâ fizika, Tome 17 (1973) no. 1, pp. 3-18. http://geodesic.mathdoc.fr/item/TMF_1973_17_1_a0/
[1] R. Haag, Dansk. mat. fys. medd., 29 (1955), 12 | MR | Zbl
[2] A. Vaitman, Problemy v relyativistskoi dinamike kvantovannykh polei, «Nauka», 1968
[3] L. Van Hove, Physica, 21 (1955), 901 ; 29 (1956), 343; W. R. Fraser, L. Van Hove, Physica, 24 (1958), 137 | DOI | MR | Zbl | DOI | MR
[4] L. D. Faddeev, DAN SSSR, 152 (1963), 573 | MR
[5] K. Heep, Théorie de la renormalisation, Springer-Verlag, 1969 | MR
[6] I. Ya. Arefeva, TMF, 14 (1973), 3 | MR
[7] A. Jaffe, Commun. Math. Phys., 1 (1965), 127 | DOI | MR
[8] F. A. Berezin, Metod vtorichnogo kvantovaniya, «Nauka», 1965 | MR
[9] I. D. Fabrey, Commun. Math. Phys., 19 (1970), 1 | DOI | MR | Zbl
[10] J. Ginibre, G. Velo, Commun. Math. Phys., 18 (1970), 1 | DOI | MR