Some properties of the double spectral function for dual amplitude with mandelstam analyticity
Teoretičeskaâ i matematičeskaâ fizika, Tome 16 (1973) no. 3, pp. 355-359
Cet article a éte moissonné depuis la source Math-Net.Ru
A study is made of the asymptotic behavior of the dual amplitude with Mandelstam analyticity in the region of the double spectral function. It is shown that if the trajectory of a Regge pole is bounded by the condition $\operatorname{Re}\alpha(s)\eqslantless\operatorname{const}$as $s\to\infty$, the amplitude satisfies a Mandelstare representation with finitely many subtractions. The double spectral function takes its greatest value in strips along its boundaries.
@article{TMF_1973_16_3_a7,
author = {A. I. Bugrij},
title = {Some properties of the double spectral function for dual amplitude with mandelstam analyticity},
journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
pages = {355--359},
year = {1973},
volume = {16},
number = {3},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TMF_1973_16_3_a7/}
}
TY - JOUR AU - A. I. Bugrij TI - Some properties of the double spectral function for dual amplitude with mandelstam analyticity JO - Teoretičeskaâ i matematičeskaâ fizika PY - 1973 SP - 355 EP - 359 VL - 16 IS - 3 UR - http://geodesic.mathdoc.fr/item/TMF_1973_16_3_a7/ LA - ru ID - TMF_1973_16_3_a7 ER -
A. I. Bugrij. Some properties of the double spectral function for dual amplitude with mandelstam analyticity. Teoretičeskaâ i matematičeskaâ fizika, Tome 16 (1973) no. 3, pp. 355-359. http://geodesic.mathdoc.fr/item/TMF_1973_16_3_a7/
[1] A. I. Bugrij, L. L. Jenkovszky, N. A. Kobylinsky, Preprint ITP-72-97E, Kiev, 1972
[2] A. I. Bugrij, L. L. Jenkovszky, N. A. Kobylinsky, Preprint ITP-72-108E, Kiev, 1972; ЯФ, 17 (1973), 614
[3] A. I. Bugrij, L. L. Jenkovszky, N. A. Kobylinsky, Preprint ITP-72-98E, Kiev, 1972
[4] A. W. Martin, Phys. Lett., B29 (1969), 431 | DOI
[5] P. Kollinz, Yu. Skvairs, Polyusa Redzhe v fizike chastits, «Mir», 1971
[6] K. A. Ter-Martirosyan, ZhETF, 39 (1960), 827 ; G. F. Chew, S. C. Frautschi, Phys. Rev., 123 (1961), 1478 | MR | Zbl | DOI | MR | Zbl