Some properties of the double spectral function for dual amplitude with mandelstam analyticity
Teoretičeskaâ i matematičeskaâ fizika, Tome 16 (1973) no. 3, pp. 355-359

Voir la notice de l'article provenant de la source Math-Net.Ru

A study is made of the asymptotic behavior of the dual amplitude with Mandelstam analyticity in the region of the double spectral function. It is shown that if the trajectory of a Regge pole is bounded by the condition $\operatorname{Re}\alpha(s)\eqslantless\operatorname{const}$as $s\to\infty$, the amplitude satisfies a Mandelstare representation with finitely many subtractions. The double spectral function takes its greatest value in strips along its boundaries.
@article{TMF_1973_16_3_a7,
     author = {A. I. Bugrij},
     title = {Some properties of the double spectral function for dual amplitude with mandelstam analyticity},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {355--359},
     publisher = {mathdoc},
     volume = {16},
     number = {3},
     year = {1973},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_1973_16_3_a7/}
}
TY  - JOUR
AU  - A. I. Bugrij
TI  - Some properties of the double spectral function for dual amplitude with mandelstam analyticity
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 1973
SP  - 355
EP  - 359
VL  - 16
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TMF_1973_16_3_a7/
LA  - ru
ID  - TMF_1973_16_3_a7
ER  - 
%0 Journal Article
%A A. I. Bugrij
%T Some properties of the double spectral function for dual amplitude with mandelstam analyticity
%J Teoretičeskaâ i matematičeskaâ fizika
%D 1973
%P 355-359
%V 16
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TMF_1973_16_3_a7/
%G ru
%F TMF_1973_16_3_a7
A. I. Bugrij. Some properties of the double spectral function for dual amplitude with mandelstam analyticity. Teoretičeskaâ i matematičeskaâ fizika, Tome 16 (1973) no. 3, pp. 355-359. http://geodesic.mathdoc.fr/item/TMF_1973_16_3_a7/