Some properties of the double spectral function for dual amplitude with mandelstam analyticity
Teoretičeskaâ i matematičeskaâ fizika, Tome 16 (1973) no. 3, pp. 355-359
Voir la notice de l'article provenant de la source Math-Net.Ru
A study is made of the asymptotic behavior of the dual amplitude with Mandelstam analyticity
in the region of the double spectral function. It is shown that if the trajectory of a Regge
pole is bounded by the condition $\operatorname{Re}\alpha(s)\eqslantless\operatorname{const}$as $s\to\infty$, the amplitude satisfies a Mandelstare
representation with finitely many subtractions. The double spectral function takes
its greatest value in strips along its boundaries.
@article{TMF_1973_16_3_a7,
author = {A. I. Bugrij},
title = {Some properties of the double spectral function for dual amplitude with mandelstam analyticity},
journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
pages = {355--359},
publisher = {mathdoc},
volume = {16},
number = {3},
year = {1973},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TMF_1973_16_3_a7/}
}
TY - JOUR AU - A. I. Bugrij TI - Some properties of the double spectral function for dual amplitude with mandelstam analyticity JO - Teoretičeskaâ i matematičeskaâ fizika PY - 1973 SP - 355 EP - 359 VL - 16 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/TMF_1973_16_3_a7/ LA - ru ID - TMF_1973_16_3_a7 ER -
A. I. Bugrij. Some properties of the double spectral function for dual amplitude with mandelstam analyticity. Teoretičeskaâ i matematičeskaâ fizika, Tome 16 (1973) no. 3, pp. 355-359. http://geodesic.mathdoc.fr/item/TMF_1973_16_3_a7/